ENGINEERING PHARMACEUTICAL INNOVATION

Water Purification 101 From Tap to Pure Understanding the What, Why, and How

Brian Hagopian Mar Cor Purification / Fluid Solutions May 20, 2008

PARAMETER	CAP/NCCLS			ASTM			
	TYPE 1	TYPE 2	TYPE 3	TYPE 1	TYPE 2	TYPE 3	TYPE
Conductivity (max)	<0.1	<0.2	<0.5	0.056	1.0	0.25	5.0
Resistivity (min)	>10.0	>2.0	>1.0	18.0	1.0	4.0	0.2
рН							5.8-8
Silica (ppb)	<500	<100	<1000	3	3	500	
Sodium (ppb)				1	5	10	50
Chlorides				1	5	10	50
Total Organic Carbon (ppb)				100	50	200	
Bacteria (cfu/ml)	<10	10		Separate specification, only where bacteria control is required Type 1 : 10/1,000 ml Type 2 : 100/1,000 ml Type 3 : 10,000/1,000 ml			

Г

PHARMACEUTICAL GRADE WATER						
PARAMETER	USP PURIFIED	USP WFI				
Total Organic Carbon (ppb)	500	500				
Conductivity	<1.3 @ 25ºC	<1.3@25ºC				
Bacteria	None given, but recommended to be 100/ml	None given, but recommended to be 10/100 ml				
Endotoxins		<0.25 EU/ml				

Page 1 of 3							
PARAMETER	ATTAINABLE	ACCEPTABLE	ALERT	CRITICAL			
Resistivity	18.2	18.2	17.9	17.5			
TOC (online, ppb)	<1	<2	5	10			
THM (ppb)	<2	<5					
Particles by laser 0.05 to 0.1 micron 0.1 to 0.2 micron 0.2-0.3 micron 0.3-0.5 micron >0.5 micron	<100/1000 mi <50/1000 mi <20/1000 mi <10/1000 mi <1/1000 mi	<500/1000 ml <300/1000 ml <50/1000 ml <20/1000 ml <4/1000 ml					
Bacteria (cfu/1000 ml)	<1	<6	25	>25			
Silica (total, ppb)	<0.5	<3	>5	>10			

2- / S	SEMICONDU	JCTOR GRA	DE WATER	
		Page 2 of 3		
PARAMETER	ATTAINABLE			
		ACCEPTABLE	ALERT	CRITICAL
Phosphate (ppb)	<0.02	<0.1	>0.01	>0.5
Silicate (ppb)	<0.05	0.1	<0.02	>0.5
Sodium (ppb)	<0.01	0.05	>0.02	>0.5
Potassium (ppb)	<0.02	<0.1	>0.02	>0.5
Ammonium (ppb)	<0.06	0.1	<0.02	>0.5
Calcium (ppb)	<0.02	<0.1	>0.01	>0.2
Magnesium (ppb)	<0.02	<0.1	<0.01	>0.2
Fluoride (ppb)	<0.1	<0.1	>0.02	>0.5
Chloride (ppb)	<0.02	0.1	<0.02	>0.5
Bromide (ppb)	<0.02	<0.1	>0.01	>0.5
Nitrate (ppb)	<0.02	<0.1	<0.01	>0.5

	NTAMINANTS			
Aluminum (ppt)*	7	50	>0.0	200
Barium (ppt)*	2	10	>50	100
Boron (ppt)*	300	<2000		
Chromium (ppt)*	8	30	>30	50
Copper (ppt)*	5	50	>50	>200
ron (ppt)*	10	100	200	>200
_ithium (ppt)*	4	30	100	>100
Magnesium (ppt)*	2	20	100	>200
Manganese (ppt)*	4	30	>30	100
Nickel (ppt)*	5	50	>50	100
Sodium (ppt)*	10	60	>200	>500
Strontium (ppt)*	2	10	>10	>10
Zinc (ppt)*	8	60	>50	>100

Inquiring minds want to know

Why does Reverse Osmosis remove ions smaller than its pore size?

Asked a little differently, how can a 200 MWCO reverse osmosis membrane remove over 90% of ions that are much smaller than 200 MW?

SP

ENGINEERING PHARMACEUTICAL INNOVATION

	Table 1	- Removal Cap	abilities of Va	rious Water	Purifica	tion Pr	ocesses	
	Coarse Particle	Absolute Membrane	Ultrafilters	Reverse Osmosis	Carbo Filtrati		Ultraviolet Disinfection	Deionization
Particles	Filters	Filters G-E	Е	Е	N		N	Ν
Dissolved lons	N	N	N	G-E	N		N	E
Small Organics	N	N	N	F-G	G-	Ë,	Ν	Р
Colloids	N	F-P	G-E	Е	P-		Ν	Р
Bacteria	Р	Е	Е	Е	А		G	A-P

For additional information

Brian Hagopian VP of Research and Development Mar Cor Purification / Fluid Solutions 160 Stedman Street Lowell, MA (978) 453-9600 e: BHagopian@mcpur.com www.mcpur.com www.fluid-solutions.com

