ENGINEERING PHARMACEUTICAL INNOVATION

Centrifugal and Positive Displacement Pumps for Hygienic Applications

ISPE Meeting November 18, 2008

Presented by:

Allen E. LeBoeuf, Product Manager Oliver M. Dean, Inc. – Worcester, MA

Primary Issues:

- Selection of Technology.
- Control of Pumps.
- Materials of Construction / Certifications.
- Mechanical Seals.
- Suction Conditions.
- Efficiency / Power Consumption.
- Cleanability / Drainability / CIP-ability.

Selection of Technology

When to Apply a Centrifugal Pump.

When to Apply a Positive Displacement . (Discussion limited to rotary lobe style)

Centrifugal vs Rotary Lobe

Centrifugal Pump

- Velocity Machine.
- Generates flow and head by the centrifugal action of a spinning impeller.

Rotary Lobe Pump

- Fixed Displacement Machine.
- Delivers a fixed flow rate per revolution of the rotors.

ENGINEERING PHARMACEUTICAL INNOVATION

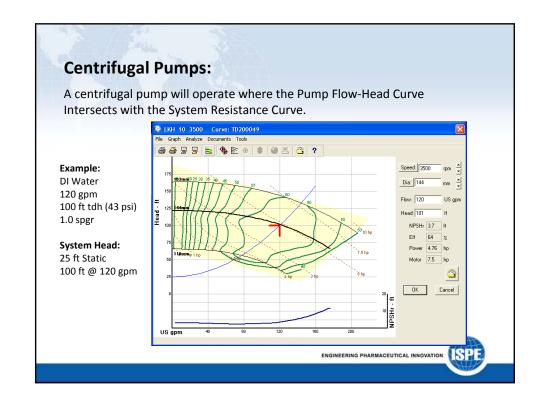
Centrifugal Pump Operation FIGURE RING PHARMACEUTICAL INNOVATION CENTRING PHARMACEUTICAL INNOVATION

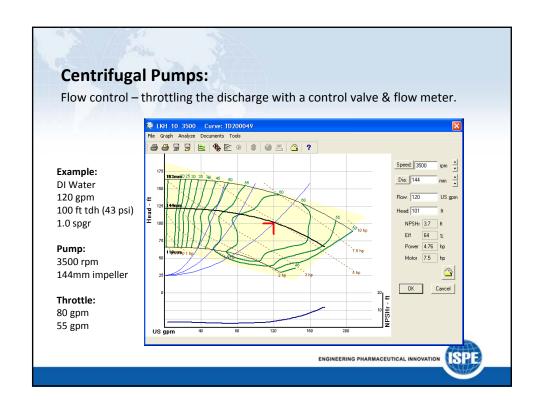
Rotary Lobe Pump Operation

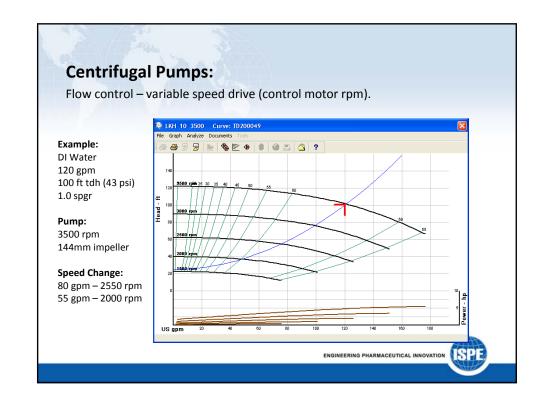
ENGINEERING PHARMACEUTICAL INNOVATION

Centrifugal vs Rotary Lobe

Centrifugal Pump


- Low Viscosity Fluid.
- Generally up to 500 Cps.
- Can go to 1500 Cps in special circumstances, but with large sacrifice in efficiency.
- Medium to high flows. Medium to low pressures.
- Both direct drive (1800 and 3600 rpm) and variable speed operation are common.
- Impeller diameter is usually trimmed to meet desired flow and head (pressure).


Rotary Lobe Pump


- High Viscosity Fluids.
- Generally 500 Cps and higher.
- Can use in low viscosity applications with sacrifice in efficiency.
- Low to medium flows.
 Medium to high pressures.
- Precise flow volume control, especially low flow rates.
- Generally operates at low speeds (up to 500 rpm) with a variable speed gear-motor.

Control of Pumps ENGINEERING PHARMACEUTICAL INNOVATION

Rotary Lobe Pumps:

Flow control – variable speed drive (control motor rpm).

Example:Rotary Lobe PumpFluid XYZModel ABC30 gpm9.25 gal / 100 Rev.100 psi0.0925 gal / Rev.600 Cps

1.0 spgr 30 gpm = 324 rpm 25 gpm = 270 rpm

20 gpm = 216 rpm

Note: an RPM adjustment would be required for low viscosity fluids due to pump slip.

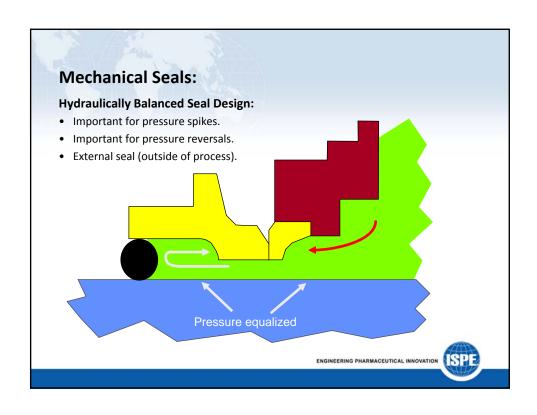
Materials of Construction and Certifications

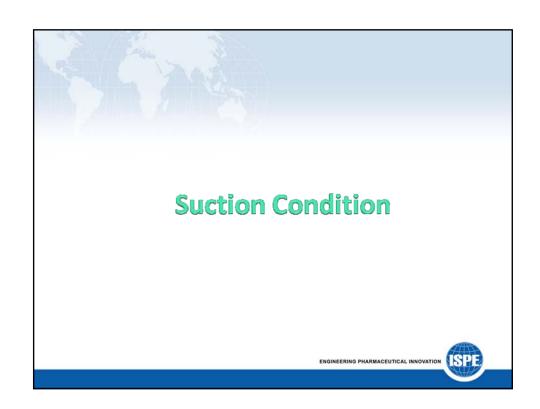
Materials of Construction:

Application Dependent – For Example:

Pump Construction & Metallurgy

- Wetted Parts: 316L ss.
- Elastomers: EPDM, FPM, FDA Compliant, USP Class VI
- Finish: 32Ra, 20Ra, 15Ra, 10Ra, Electropolish, Passivation, etc.
- Mechanical Seal: Single or Double; Balanced vs Unbalanced;
 Face Materials; Flush or No Flush.
- Exterior: Painted or No Paint.
- Drainability, Cleanability, CIP-ability (more later).
- Standards: 3A, BPE, FDA, EHEDG, cGMP


Certifications & Tests


- · Certifications: Material Traceability
- Performance Guarantees / Factory Tests: Q, H, E, P, N, etc.

Mechanical Seals

Suction Conditions:

Huge Area for Potential Operational Problems:

Rule of Thumb:

 Fluid need to be able to get to pump suction, under sufficient pressure (no vaporization), as fast as the pump want to take it, or the pump will cavitate.

General Guidelines:

- Keep suction lines as short as practical. Short is good.
- Keep suction line at least one size larger than pump discharge. <u>Bigger is better</u>.
- Keep suction line velocity low. Especially with viscous fluids.
- Minimize pressure drop in suction line.
- Avoid air traps in suction line. Can cause loss of prime.

Suction Conditions:

If You are Involved in Sizing & Selecting a Pump for a New Application:

Take Careful Note of the NPSH Required by the Pump:

- NPSH = Net Positive Suction Head.
- NPSHR = Suction Head (pressure) required at the pump to prevent cavitation.
- Do an NPSH Available calculation for your specific piping arrangement.

NPSHA must be greater than NPSHR, or you will be Not Pumping So Hot!

What is Cavitation:

- Vaporization of fluid at eye of impeller.
- As the fluid & bubbles travels along the vane, the pressure increases.
- The collapse of those gas bubbles back to fluid is a high energy impact.
- Enough to remove metal from impeller. Deflect shafts. Rotor strike.

Suction Conditions:

Cavitation Damage – Centrifugal Pump Impeller:

Signs of Cavitation:

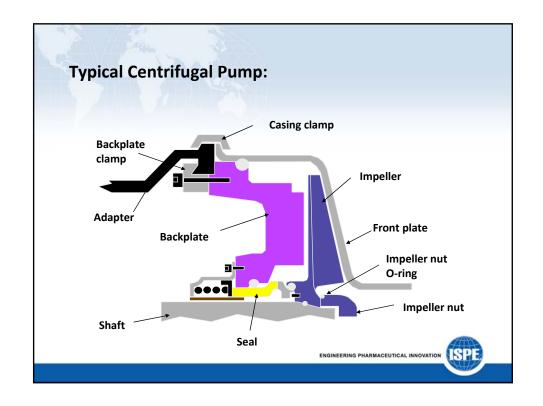
- Centrifugal Pump Sounds like pumping marbles, vibration, noise, damage.
- Rotary Lobe Pump Banging noise (rotors hitting case), vibration.

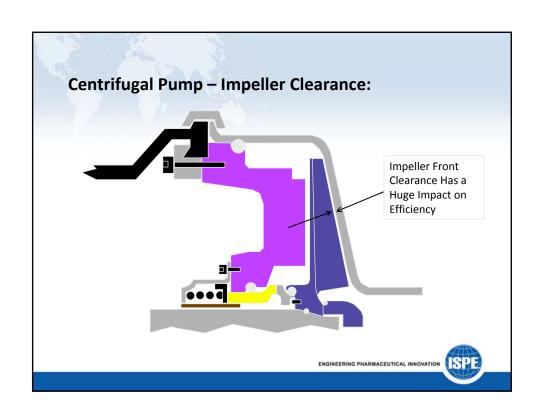
ENGINEERING PHARMACEUTICAL INNOVATION

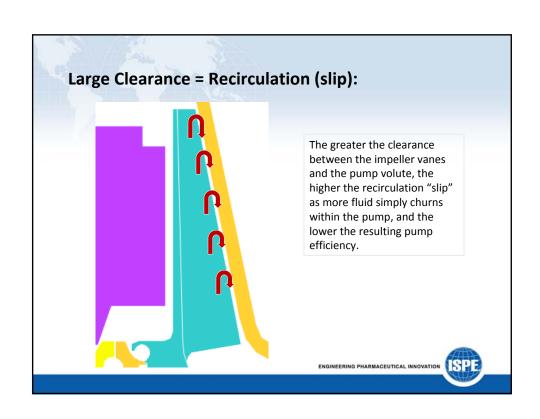
Pump Efficiency and Power Consumption

ENGINEERING PHARMACEUTICAL INNOVATION

Efficiency & Power consumption:


Positive Displacement Pumps


- Generally highly efficient. Typical 90 99%.
- Exception is with low viscosity fluids.


Centrifugal Pumps

- Generally range of efficiency from < 10% (if running at very low flows) to 60 – 70%.
- Lots of room for careful review.
- The newer designs are generally 25% to 50% more efficient than the older pump technology.
- Reasons: Impeller geometry, improved manufacturing methods, tighter clearances, less slip (recirculation).

Energy Savings:

Centrifugal Pumps – is it worth a look?

Example: Centrifugal Pump - 100 gpm @ 100 ft tdh

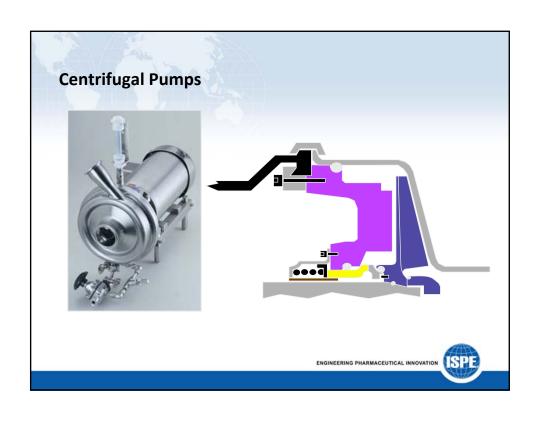
Typical "old" Series 55% Eff 5.18 hp

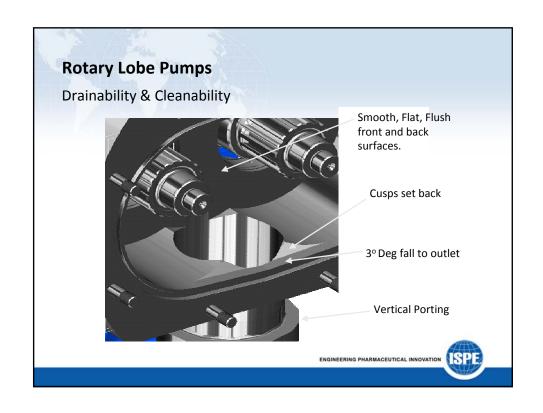
High Eff. Pump 67% Eff 3.73 hp 28 % power reduction

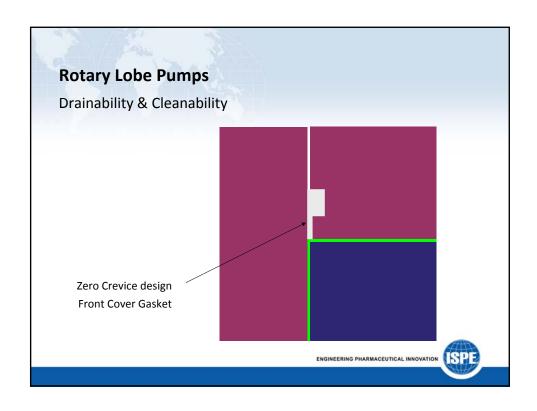
At \$0.10/Kwh and 24/7 operation Power cost is \$4380/yr (High Eff)

Power cost is \$6084/yr (Old Series)

Savings = \$1704/yr.


Consider upgrading existing pumps too?


Rule of thumb: 1 HP power reduction @ \$0.10/Kwh = \$1100/Yr. (cont. op).



Cleanability Drainability CIP-ability

Cleanability, Drainability, CIP-ability:

Centrifugal Pumps

- 3A, FDA, EHEDG certifications.
- Internal finish.
- · Low point drains.
- Design & position of o-rings & gaskets.

Positive Displacement Pumps

- Look beyond the 3A certification.
- Vertical porting.
- Drainable cusps.
- Smooth, flat, flush rotor case back & front.
- Mechanical seal position for cleanability.

Centrifugal and Positive Displacement Pumps For Hygienic Applications

Thanks for your attention.

Questions.

Presented by: Allen E. LeBoeuf, Product Manager Oliver M. Dean, Inc. – Worcester, MA

