ASTM E2500 Lessons Learned

The Good, The Bad and The Ugly on Implementing a New Approach

Agenda

• Project Background
• Execution Strategy
• Lessons Learned
• Best Practices
Project Background

- Renovation and expansion of an existing processing suite
 - Suite was never released for production
 - Support product transfer
 - Upstream process
 - Modifications to an existing Seed and Production Bioreactor
 - New control system
 - New centrifuge and powder transfer system
 - Modifications to existing harvest tank farm
 - New media and buffer prep tank farm
 - Controls
 - New down stream process equipment
 - Chromatography columns

- Utilities
 - Modifications to USP water & WFI systems
 - New Clean Steam Generation and Distribution System
 - Expansion of plant utilities
 - New AHU for process areas
 - Control system
 - Separate Data historian and alarm

- Facility
 - New processing suites
Project Background

• Project Driver
 • Schedule
 • 7 months to complete construction, commissioning and verify equipment fit for intended use
 • 1st engineering run May 2008

Project Background

• Compliance
 • Client had good history of compliance
 • No non-compliant observations from recent FDA or customer audits
 • Sites Validation Staff had strong technical knowledge about equipment and systems
Execution Strategy

• Use an ASTM E 2500 approach to meet schedule
 • Focus efforts on making sure system/equipment meet installation and performance requirements
 • Reduce redundant testing and documentation
 • Eliminate effort on addressing “protocol deviations”
• Integrate with Construction
 • CQV team responsible for construction QA and startup activities
• Team Approach
 • Comprised of Project, and Client’s Operations, Maintenance and Validation Personnel

Execution Strategy

• Requirements Definition
 • Project URS, Batch Record and SOP’s used to develop downstream documents
 • Site Procedures allowed use of ASTM E2500
• Specification and Design
 • Critical attributes identified in specifications and drawings
 • Documentation requirements for OEM’s and Contractors
 • Design review and approval of P&ID’s, ISO’s and OEM/Contractor submittals
Execution Strategy

- Verification
 - Commissioning
 - Information and data used to verify fit for intended use.
 - Activities
 - Skid: Mechanical & Electrical Inspection, FAT,
 - Field: Progressive installation verification walk downs, Construction QA results
 - Site Acceptance Testing

- Documentation
 - Inspection reports
 - Construction QA Results & As-built Drawings
 - FAT & SAT documents
 - Commissioning protocol
 - Engineering field reports
 - Punch list
 - Record of the issues and resolutions
Execution Strategy

• Verification
 • Review
 • Progressive review of Commissioning documents
 • Final approval of document by client’s validation staff
• Acceptance and Release
 • IOQ Protocol format
 • Referenced commissioning data, system SOPs, training, and calibrations

• Verification
• Acceptance and Release
• IOQ Protocol format
 • Review of commissioning data, system SOPs, training records, and calibration data
 • Included performance testing for certain systems
 • Contained a “Release for Use” Statement
 • Approved by Client: Quality, System Owner, Validation
Lesson Learned

• The Importance of Design Review
 • Problems with existing systems and equipment
 • In-depth review to identify risks and develop mitigation plans
 • As-built inspections
 • Performance testing (water or mock runs)
 • Review of life-cycle information
 • No problems report on new equipment

Lessons Learned

• If you always do what you always did, you’ll always get what you already got.
 • Hard to get stakeholders to feel comfortable with new approach
 • Tendency to migrate to previous methods
 • Quality documentation does not make up for bad design or poor fabrication/installation
Lessons Learned

• Be a Good Consumer
 • Clearly define what the OEMs and Contractors are responsible for:
 • Design, Submittals, Quality and Acceptance Testing, and Documentation
 • Track performance
 • Do not over or under buy

Lessons Learned

• Importance of Subject Matter Experts
 • New control program for bioreactors did not meet process expectations
 • Client did not have expert to work with automation contractor
 • Approved requirements and specifications did not meet process requirements
Best Practice

• Team Approach
 • Four teams based on functional areas
 • Fermentation, Purification, Media/Buffer & Facility/Utilities
 • Responsibilities:
 • Commissioning and Verification activities for systems/equipment within area
 • Coordinating activities with construction and OEM
 • Including issue resolution

Best Practice

• Team Approach
 • Structure
 • CQV Specialist(s)
 • Engineering expert (SME/Designer)
 • Operation Representatives
 • Maintenance Representatives
 • One member of the team was the leader
 • Coordinated activities and efforts
Best Practice

- System Specific Punch Lists
 - Tool to document history
 - Progress of Installation/Fabrication
 - Installation and performance issues and resolutions identified during commissioning
 - Support life-cycle design reviews
 - Managed by the team

There is nothing wrong with change, if it is in the right direction

Winston Churchill
Thank you

Questions?

Robert L. Smith
CQV Manager
Parsons
617-880-9656
Bob.L.Smith@Parsons.com