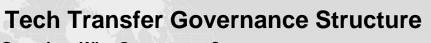

Process Technology Transfer Defined

The faithful and compliant transfer of all technology, information, documentation, and skills required for a manufacturing process from the process owner (originating organization) to a GMP manufacturing site (receiving organization) where the process has not run previously.

EERING PHARMACEUTICAL INNOVATION

Receiving Organization Assess Readiness for Process Tech Transfer

Transfer readiness improves with experience at increasing scales


• If already a commercial product, the question is moot

Conduct technical feasibility assessment of process readiness

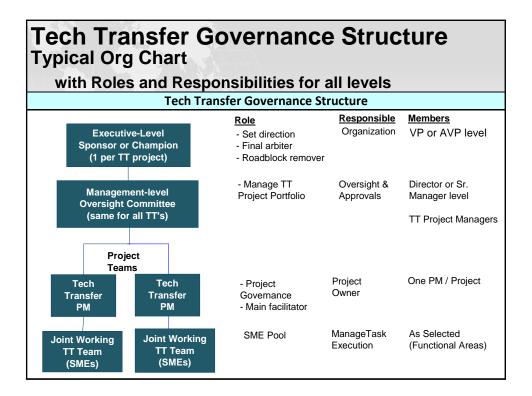
- A key activity before starting tech transfer
- Standards of productivity & product quality for early-stage clinical products may be lower than for a licensed process

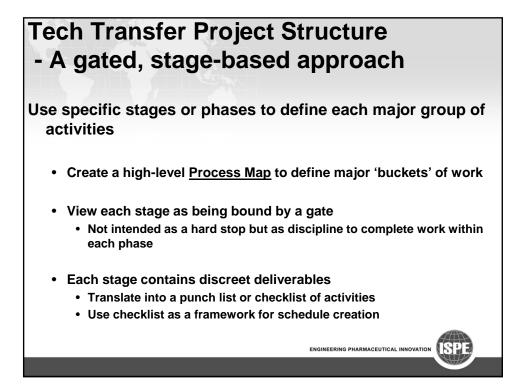
Does it deliver appropriate product quality and quantity as you scale up?

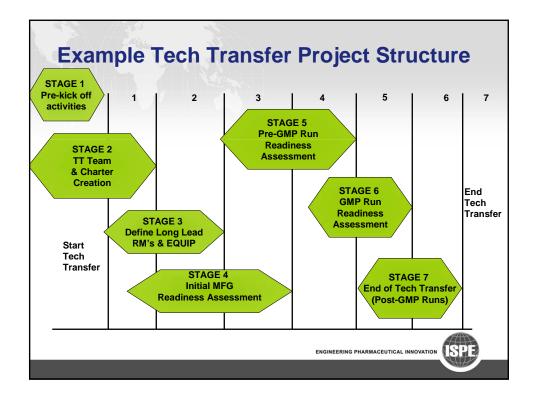
- At lab scale
 - With only small-scale data, Receiving Organization must conduct rigorous assessment of manufacturability
- At Pilot or near-commercial scale
 - · Manufacturability assessment still critical
 - Operational experience increases confidence and improves likelihood of successful tech transfer
 - Process characterization and robustness studies a plus
 - Lower risk of scale-up related problems
 engineering pharmaceutical inno

Question: Why Governance?

Answer:

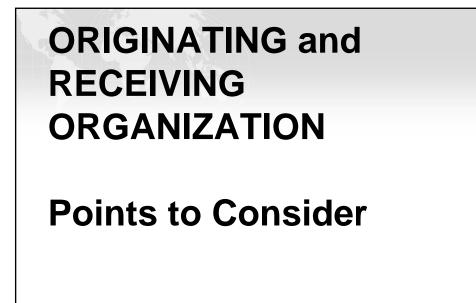

- Decision making and project management is efficient
- Teams can be officially sanctioned and held accountable
- Resource allocation can be efficiently managed


Elements


- Pre-define with internal management and with CMO
- Create a management structure Org Chart
 - Defined Roles and Responsibilities for all levels
 - Establish a formal escalation process
 - Define communication and reporting channels
- Establish performance measurements (e.g., schedule adherence)
- Develop a responsibility assignment matrix (RACI)

ISP

SPE



Schedule	
The schedule is the <u>k</u>	ey management tool for
accurate project trac	king
	2 Week Lookahead - All Eunctions

			2	VVEEK LOOK	ahead - All F	uncuons				
otivity ID		Activity Name	Original	Start	Finish	Total			Qtr 4, i	2009
			Duration			Float		Nov		
	Tech [·]	Transfer Project - Level III	133	A 90-Jul-09	18-Jan-10	104				
Proce	ss Devel	opment	0	25-Nov-09	25-Nov-09	21				
	20470	Approve Rev 0 Process Description - Thaw> BRX	0		25-Nov-09*	21			•	
	20810	Approve Rev 0 Process Description - Clarification & Capture	0		25-Nov-09*	21			•	
Engin	eering		93	09-Jul-09 A	10-Dec-09	129				
URSs			88	09-Jul-09 A	04-Dec-09	134	1			1
	-5380	Approve URS - Harvest Clarification & UF/DF Capture (Shire)	5	17-Jul-09 A	01-Dec-09	137				÷ .
	-5390	Issue URS - Harvest Clarification & UF/DF Capture	0	01-Dec-09		137				٠
	-5330	Approve URS - Cell Expansion for Bioreactor Production (Shire)	10	09-Jul-09 A	03-Dec-09	134				<u> </u>
	-5340	Issue URS - Cell Expansion for Bioreactor Production	0	04-Dec-09		134				
FS Sc	cope Docu	uments	54	24-Sep-09 A	10-Dec-09	15				T
	3650	Draft FS Scope Document - BRX-1300/1800 Integration	5	24-Sep-09 A	25-Nov-09	15				
	3660	Review FS Scope Document - BRX-1300/1800 Integration	5	25-Nov-09	03-Dec-09	15				<u> </u>
	3670	Approve FS Scope Document - BRX-1300/1800 Integration	5	04-Dec-09	10-Dec-09	15				
Procu	rement		113	21-Aug-09 A	18-Jan-10	104				
BRX-1	1300 Integ	gration (Centrifuge, Bleed Bag, Harvest Break Bag)	113	21-Aug-09 A	11-Jan-10	0				T
	4640	Request/Review/Approve Quote - BRX-1300 50L Harvest Brea	10	21-Aug-09 A	03-Dec-09	14				÷
	3820	Procure Electrical/Controls Contract - BRX-1300 Integration	10	25-Nov-09	10-Dec-09	20				÷
	4580	Procure BRX-1300 200L Bleed Bag Tote/Scale	60	05-Oct-09 A	14-Dec-09	17				÷
	4600	Procure BRX-1300 50L Harvest Break Bag Tote	10	04-Dec-09	17-Dec-09	14				
	4590	Procure BRX-1300 Harvest Break Bag Scale		18-Sep-09 A	04-Jan-10	4				1
	4570	Procure BRX-1300 Bleed Bag Pumps		18-Sep-09 A	11-Jan-10	-1				÷
BRX-1		gration (Centrifuge, Bleed Bag, Harvest Break Bag)		21-Aug-09 A	11-Jan-10	0				
	-14670	Request/Review/Approve Quote - BRX-1800 50L Harvest Brea		21-Aug-09 A	03-Dec-09	15				
	-23830	Procure Electrical/Controls Contract - BRX-1800 Integration		25-Nov-09	10-Dec-09	18				
	-14720	Procure BRX-1800 200L Bleed Bag Tote/Scale		05-Oct-09 A	14-Dec-09	18	:			1
	-14690	Procure BRX-1800 50L Harvest Break Bag Tote		04-Dec-09	17-Dec-09	15				
	-14700	Procure BRX-1800 Harvest Break Bag Scale	25	18-Sep-09 A	04-Jan-10	5				-

ORIGINATING ORGANIZATION Key Requirements & Points to Consider

- Allocate sufficient time for development of process
- Create an accurate and locked-down process description (both upstream and downstream) as early as possible ...or at least a PFD with operating and performance parameters / ranges

GINEERING PHARMACEUTICAL INNOVATION

ENGINEERING PHARMACEUTICAL INNOVATION

- Identify critical quality attributes, if possible
- If process description is not fully developed, have a solid PFD and input / output process parameter tables ready
- Do as much process characterization as possible up front, you'll be doing the receiving organization a big favor!

ORIGINATING ORGANIZATION Common pitfalls

Different for internal tech transfers vs transfers to CMO

INTERNAL Tech Transfers

- Pre-Commercial / Clinical
 - Downstream process tends to receive less time for development versus upstream process
 - In aggressive TT projects, process characterization and optimization is ongoing after transfer activities start
 - Creates risk for engineers specifying equipment

ORIGINATING ORGANIZATION Common pitfalls

EXTERNAL Tech Transfers to CMO

- Can be difficult to assess CMO capabilities
- Not all issues with CMO can be anticipated and addressed before entering into a contract
 - Pre-define change order costs with CMO
- Failure to perform thorough due diligence and standardized risk assessment of CMO capabilities can result in unpleasant surprises....and a lot of extra work

ENGINEERING PHARMACEUTICAL INNOVATION

- Look at documentation practices
- Look at Quality Systems
- Look at EVERYTHING

RECEIVING ORGANIZATION Key requirements & Points to Consider Process Capability Assessment Confirm that process delivers appropriate productivity and product quality for its life cycle stage (clinical) · At least at lab scale · Preferably at pilot scale ✓ Facility Fit · Assess equipment and utility requirements first · Develop a comprehensive capital equipment inventory ✓ Risk Assessments · Conducted at outset of transfer & updated while moving through stages ✓ BOMs · Develop and lock-down as early as possible SPE INGINEERING PHARMACEUTICAL INNOVATION

RECEIVING ORGANIZATION Common pitfalls

Automation

- Expect process interruptions and bugs during pre-GMP runs
- Have automation engineers and operations staff work closely together
- CIP cycle development and validation often takes longer than expected
- Documentation processing and readiness for GMP runs
 - Allow sufficient time to revise documents before GMP runs
- Insufficient time allocated for training
 - Take advantage of training on draft documents
 - Try to maximize MFG operator experience with engineers and development staff
 ENGINEERING PHARMACEUTICAL INNOVATION

General Considerations For the CLIENT

Pre-commercial

 Make sure the process can deliver appropriate product quality and quantity for your clinical program

Commercial

- Create a comprehensive process description
- Share ONLY what the CMO needs to make your product but is sufficient to avoid numerous change orders

SPE

ISP

ENGINEERING PHARMACEUTICAL INNOVATION

- Perform a thorough facility fit assessment
- Ensure that material vendors extend same pricing to CMO
- Make sure CMO has adequate proprietary information segregation and protection practices
- Pre-define plant access rules carefully

General Considerations For the CMO

Pre-commercial

- Make sure the process can deliver appropriate product quality and quantity for your clinical program
 - Review the data that proves this

Commercial

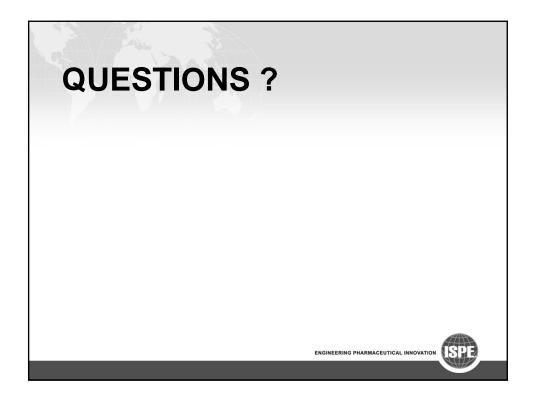
- Review the process description carefully
- Insist that all meeting minutes are taken by the CMO
- Define terminology and payment schedules for:
 - Starts
 - Batch completions
 - Raw materials
 - Breach of contract

General Considerations For the CMO - continued

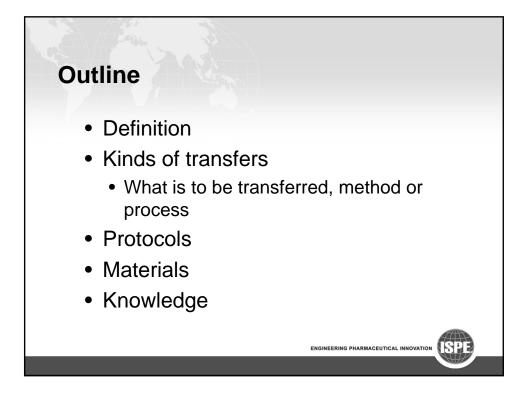
Commercial

- Establish clear, responsible business communication practices: Verbal, Written, Email
- Define what types of electronic devices the client may use while in the plant
- Establish communication forums for data exchange early
- Agree to a validation philosophy to ensure it aligns with client expectations

SPI

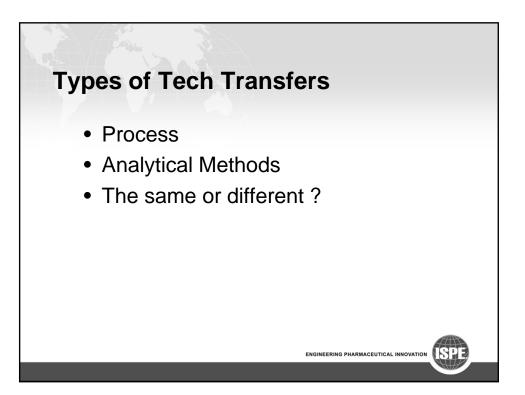

- Bracketing or Family Approach
- Mock versus real process soils
- ICV (yes or no)
- Protocol approval (joint or CMO only)
- Define PQ expectations and requirements, NGINEERING PHARMACEUTICAL IN

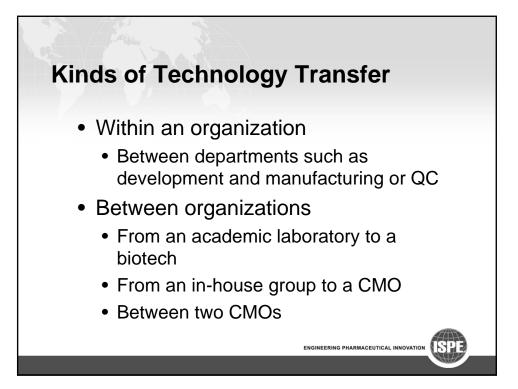
Project Management Summary of Key Success Factors

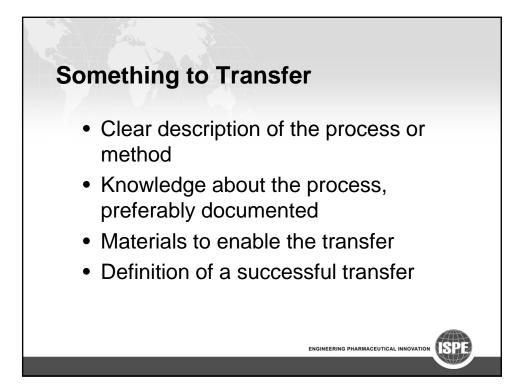

- Create a management-approved project scope, stick to the plan, and minimize scope creep
- ✓ Effective meeting management
- ✓ Anticipate trouble spots and keep governance apprised
- ✓ Build a detailed, baseline (Level III) schedule as early as possible
- ✓ Establish team ground rules and hold people accountable
- ✓ Develop standard reporting tools and templates
- ✓ Define a Communication Strategy and use it
- \checkmark Use Collaboration Tools that the whole team can access

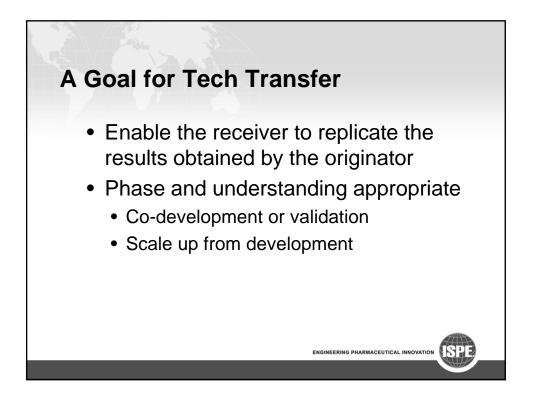
ENGINEERING PHARMACEUTICAL INNOVATION

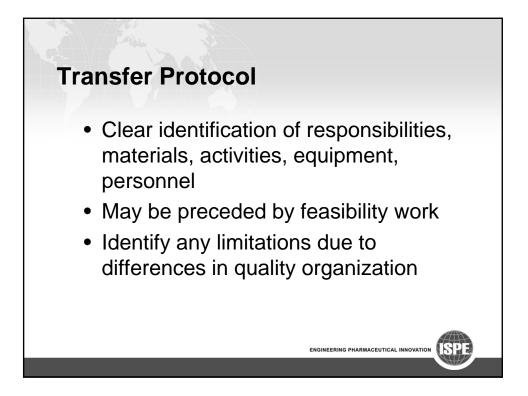
• Example: Portals such as eRoom and SharePoint sites

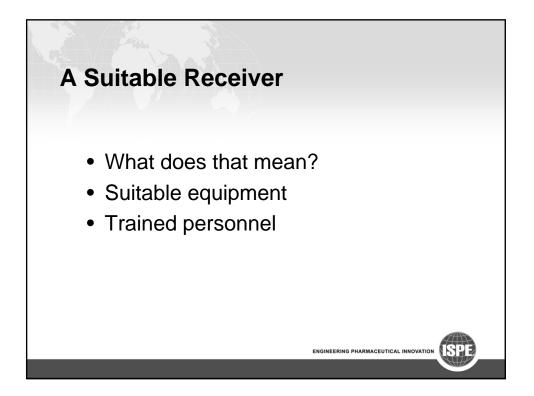


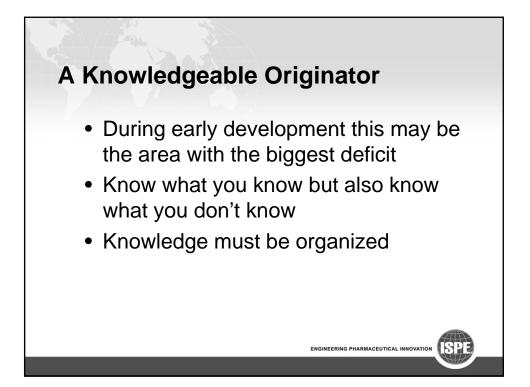


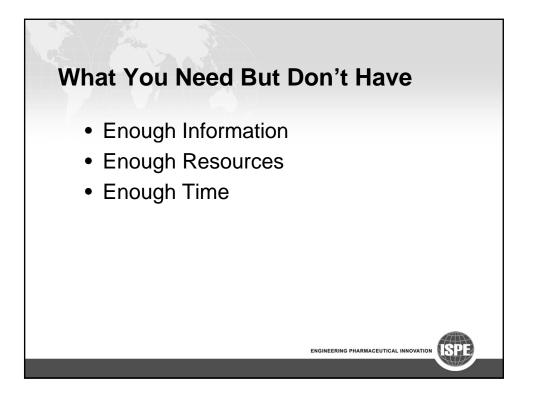

Technology transfer is:

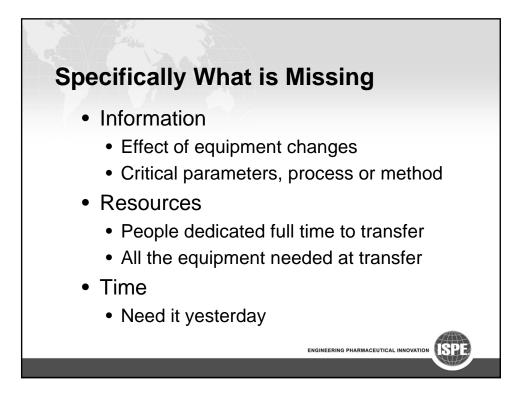

- the process of sharing of skills, knowledge, technologies, methods of manufacturing, samples of manufacturing and facilities among ...to ensure that scientific and technological developments are accessible
- the process of transferring scientific findings from research laboratories to the commercial sector.
- the transfer of technology or know-how between organizations through licensing or marketing agreements, co-development arrangements, training or the exchange of personnel
- the transfer of knowledge generated and developed in one place to another, where is it is used to achieve ...
- The process whereby one organization or group within an organization transfers a process to another organization or group within the same organization so as to enable the receiver to perform the process with the same outcome as obtained by the originator

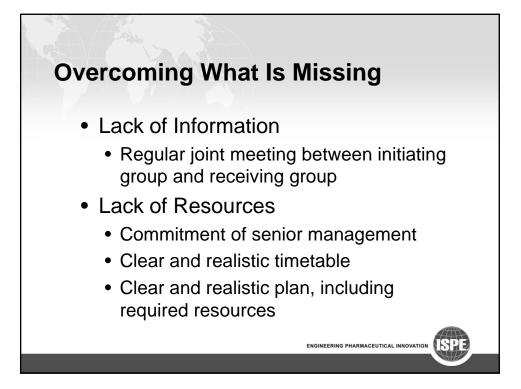


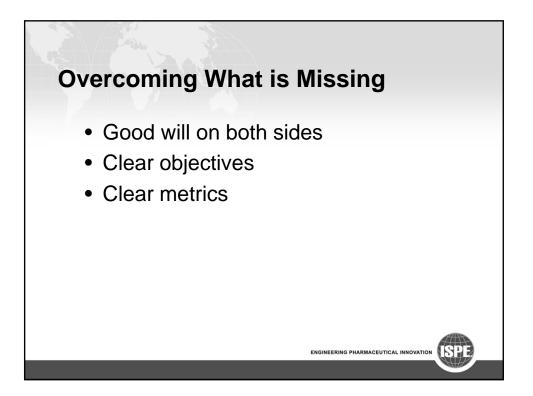


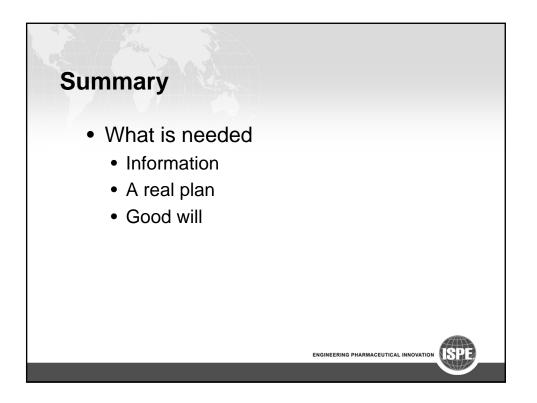


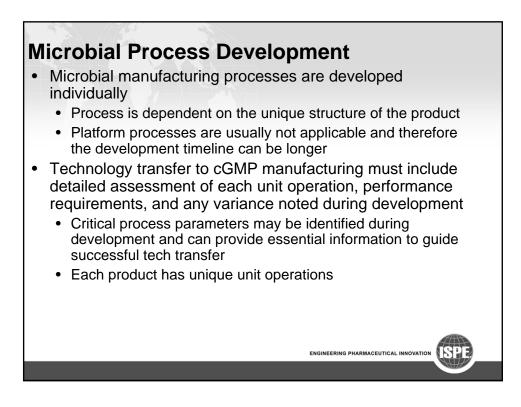


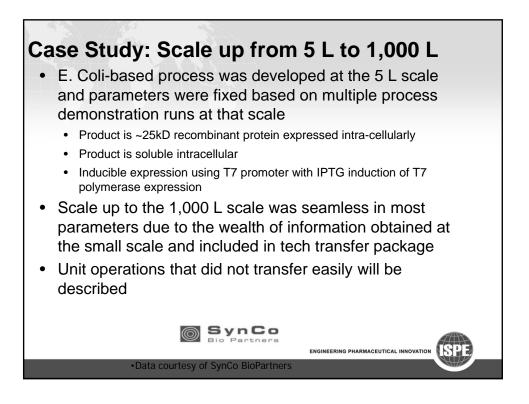


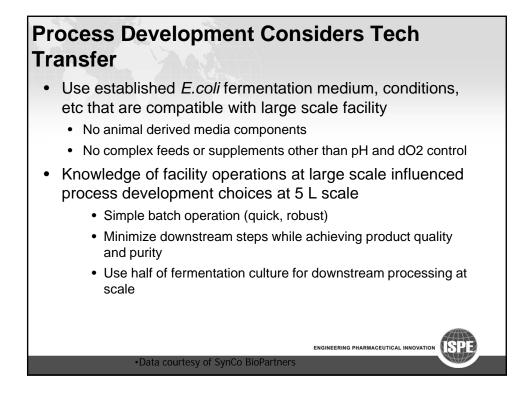


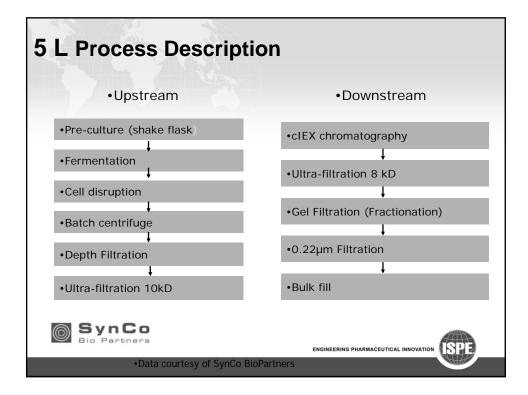


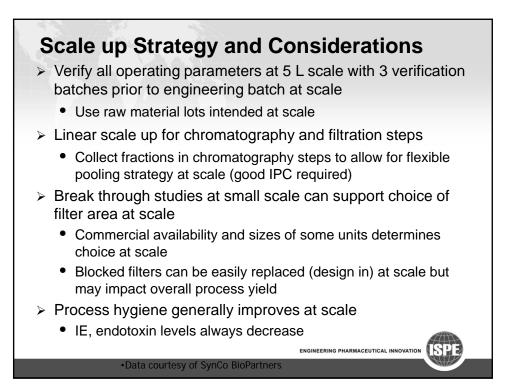


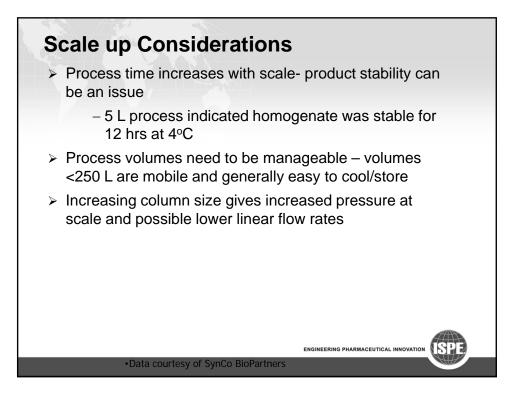


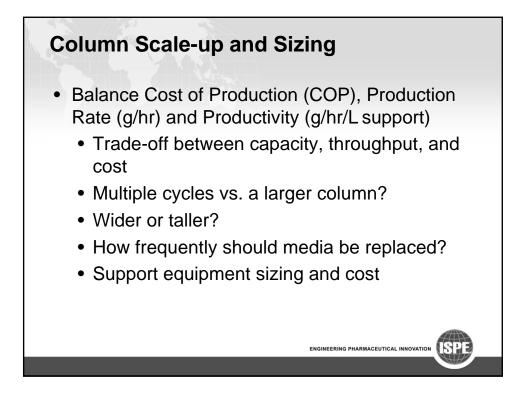


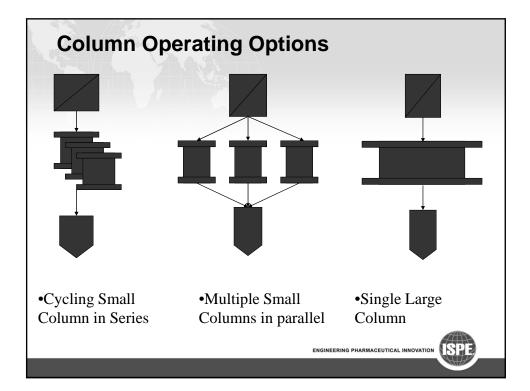


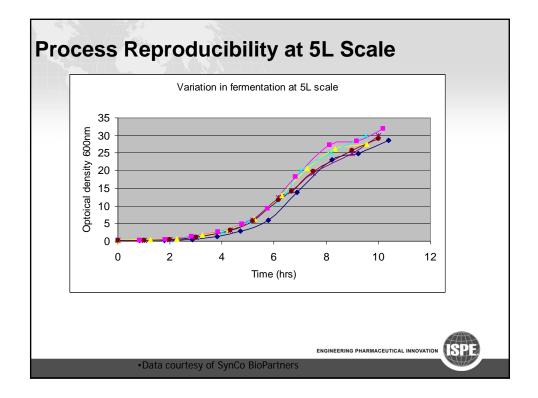


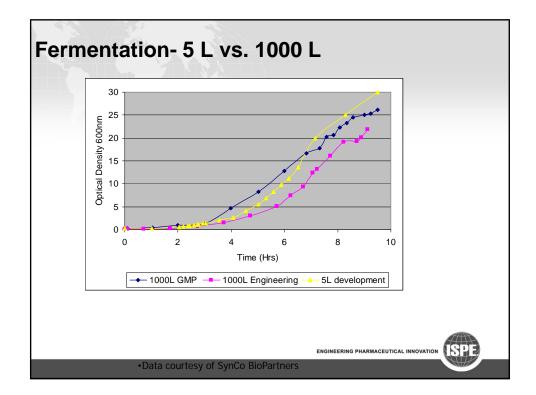

Microbial Process Scale Up Strategies

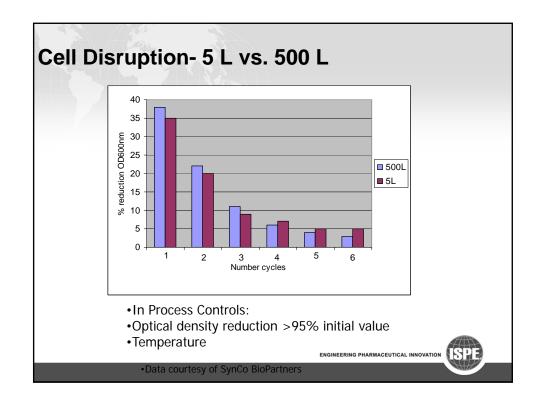

- Technology transfer and scale up from development laboratories to cGMP manufacturing environment can be challenging
 - Requires significant process evaluation and rigorous analysis of multiple parameters
 - To mitigate scale up risk, initial scale up is normally from 5-10 L lab scale to 100-200 L process demonstration scale
 - Secondary scale up to cGMP scales of 1,000+ L is driven by data from initial scale up and by facility limitations
- With rigorous development and testing at small scale, tech transfer and scale-up directly from lab scale to production scale is feasible
- This approach will save time and money for companies that are developing products expressed in microbial systems

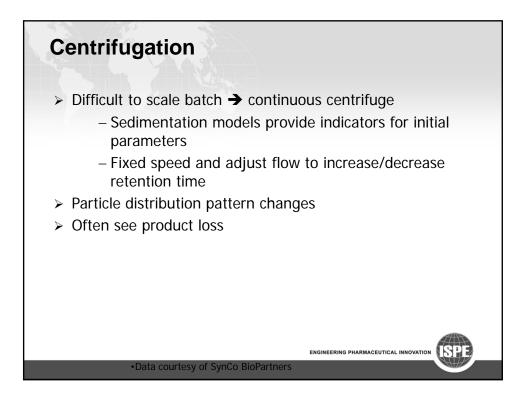






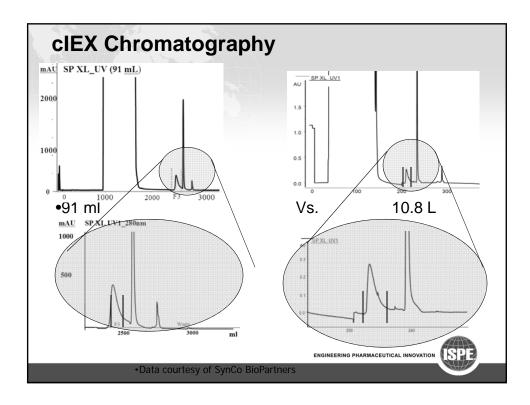


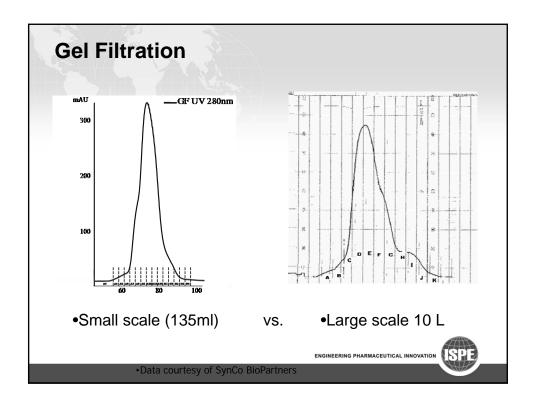


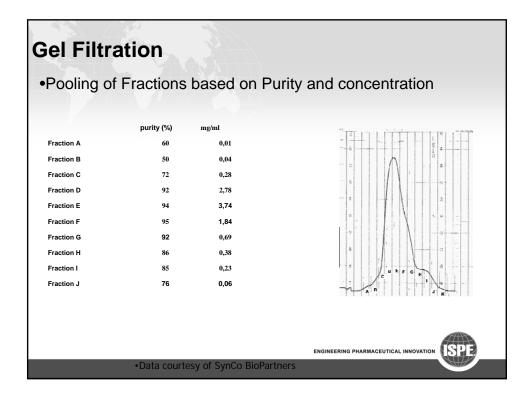

Step 5L sca		cale	1000L scale		
	Volume	Process time	Volume	Process time	
Pre-culture I/II	1 x 150ml	10-14 hrs	1 x 150ml, 4 x 2.3L	10-14 hrs stage 1 10-14 hrs stage 2	
Fermentation	4.5L	9-11 hrs 12-15 hrs 4⁰C	1000L	9-11 hrs 12-15 hrs 4⁰C	
Cell disruption	4.5L	0.5 hrs	500L	1.5 hrs	
Centrifugation	4.5L	1 hr @5000x <i>g</i> <i>(batch)</i>	500L	2-5 hrs @ 4500x g (continuous)	
Depth Filtration	4.5L	2 hrs	500L	6 hrs	
Ultrafiltration	0.75L	5 hrs	120L	3-5 hrs	
Cation Exchange	750ml (load), 180ml (eluate)	2 hrs 0.3 hrs	120L (load), 10L (eluate)	2 hrs 0.3 hrs	
Ultrafiltration	30ml	2 hrs	1L	2 hrs	
Gel Filtration	3ml fractions	3 hrs	250ml fractions	3hrs	

Unit operation	5L scale	1000L scale		
Centrifugation	Batch centrifuge	Continuous centrifuge		
Depth Filtration	Cuno 60 0.0021m²/L harvest Cuno 90 0.0015m²/L harvest Lifeassure 0.014m²/L harvest	Cuno 600.0072m²/LharvestCuno 900.0036m²/L harvestLifeassure0.014m²/L harvest		
Ultrafiltration	0.1m ² (0.01m ² /L harvest)	5.0m ² (0.01m ² /L harvest)		
Cation Exchange	2.6cm diameter 5.3 cm² surface area 15 cm bed height	30 cm diameter 706.9 cm² surface area 15 cm bed height		
Ultrafiltration	0.05m ² (0.27m ² /L harvest)	0.2m ² (0.2m ² /L harvest)		
Gel Filtration	1.6cm diameter 2.0 cm ² surface area 67 cm bed height	14 cm diameter 153.9 cm ² surface area 67 cm bed height		
Final Filtration	0.0008m ²	0.01m ²		

Depth Filtration at Full Scale

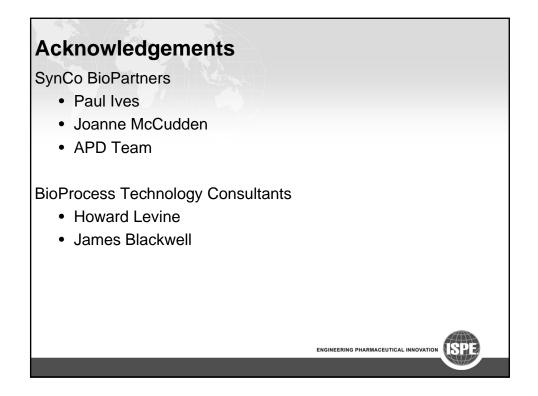

- Life Assure filters blocked during first batch at full scale (Engineering Batch).
- > Flow rate decreased in GMP batch to prevent similar blockage
- Centrifugation and filtration are challenging to scale up and are not a direct process transfer from development to production.


Parameter	Engineering	GMP
Flow rate (L/hr)	230	125
CUNO 60 (m ²)	3.6	3.6
CUNO 90 (m ²)	1.8	1.8
Life Assure (m ²)	13.7	13.7


SPE

INGINEERING PHARMACEUTICAL INNOVATION

•Data courtesy of SynCo BioPartners



Unit Operation	Scaleability	Comments		
Pre-culture I/II	Good	Ratio of medium to flask volume is an issue for OTR. Additional pre culture phase for at scale applications needs to be tested during verification runs		
Fermentation	Good	Process simplicity is the key with batch processes being most reproducible.		
Centrifugation	Poor	Comparison of batch centrifuge vs continuous centrifuge is a challenge		
Cell disruption	Excellent	Highly reproducible. Defining reduction in optical density allows differences at scale to be compensated		
Depth Filtration	Good/ Excellent	Scale up on basis of surface area usually means larger margins at scale but are acceptable if load studies not executed.		

Unit Operation	Scaleability	Comments
Jltra filtration	Good/ Excellent	Surface area and trans membrane pressure should be monitored
Chromato- graphy	Good/ Excellent	Establish binding capacity (for binding steps) early and test expected final bed height during development phase. Consider volumes of pools at scale when developing model – collection and storage issues Consider flow rate effects at scale leading to pressure

