Modeling Protein Degradation Processes and the Development of Rational Approaches to Stabilization

A New Strategy of Molecular QbD

Naresh Chennamsetty¹, Vladimir Voynov¹, Veysel Kayser¹, Curt Schneider¹, Diwakar Shulka¹, Bernhard Helk² and Bernhardt L. Trout¹

1) MIT 2) Novartis Pharma AG

New Strategic Approach

 Incorporate developability and manufacturability early.

Incorporate QbD.

 Reduce overall time from discovery to market launch.

 Molecular QbD presents a new strategic option.

Trout Research Group

Research Areas in Trout Group Molecular QbD

- Formulation and Stabilization of Biotherapeutics.
 - Aggregation
 - Oxidation
 - Deamidation
 - Hydrolysis
- Crystallization and New Technologies for the Manufacturing of Small Molecular Pharmaceuticals.
- Major Initiatives
 - Novartis-MIT Center for Continuous Manufacturing
 - Singapore-MIT Program on Chemical and Pharmaceutical Engineering

Objective for today:

Identify major problems that you face, and determine how we might be able to help.

Molecular QbD for Therapeutic Antibody Stabilization

Aggregation of Therapeutic proteins: E.g. Therapeutic Antibodies

Antibody is a large glyco-protein (~ 1300 residues,150kDa)

 Therapeutic antibodies are used in the treatment of cancer, Rheumatoid Arthritis, etc.

Therapeutic protein sales are growing fast

Worldwide sales

*Source: BCC Research

- Antibody sales are growing at a fast pace
- The sales could reach \$56 billion by 2012, a compound annual growth rate (CAGR) of 13%

Problems: Antibody Aggregation

 Therapeutic antibodies aggregate during manufacture and storage

Why do antibodies aggregate ?

- What regions are aggregation prone?
- Can we modify these aggregation prone regions to enhance stability ?

Molecular level detail on aggregating regions

Validation

Overview of methodology

* SAP (Spatial Aggregation Propensity) technology developed in this project

Simulation methodology

 Detailed atomistic model for antibody

 Explicit atomistic model for water

CHARMM force field¹ for protein, TIP3P water model²

- CHARMM³ and NAMD⁴ simulation packages
- Simulations in the NPT ensemble at 300K and 1atm
- Ewald summation for electrostatics
- Supercomputer resources from NCSA

For unknown X-ray structures: <u>Homology modeling with canonical structures¹⁻³</u>

 Validation: Structure obtained by homology modeling matches very well with the X-ray structure 13

1) Chothia, C., and Lesk, A. J. Mol. Biol. (1987) 2) Chothia *et a*l Nature (1989) 3) Al Lazikani et al, J. Mol. Biol (1997)

Full antibody simulation

 Full antibody constructed from fragments using another antibody, 1HZH, as template

 Simulated using supercomputer

• First full MAb simulation in the literature

Fc fragment simulation

- Significant fluctuations in protein and sugar groups
- These fluctuations could dynamically expose buried hydrophobic residues

SAP tool applied after simulation

Unstable antibody

Molecular simulation of a single antibody

SAP Technology

SAP to Identify aggregating regions

SAP mapped onto antibody structure

BLUE regions are highly hydrophilic dynamically exposed patches

18

Mutation of SAP predicted aggregation prone regions

- 5 sites with high SAP values selected for mutations
- These sites are mutated to more hydrophilic residues

Stability analysis of mutants by SEC-HPLC

- All 8 mutants lead to increase in monomers (decrease in aggregates)
- This validates SAP predictions

DSC analysis of mutants

- The mutants have higher melting transition for the C_H2 domain
- This indicates increased stability of the mutants

SAP predicts the aggregation prone region of Hemoglobin S

Can SAP predict protein binding regions?

SAP Technology

Predicts aggregating regions

Predicts binding regions ?

23

SAP predicts protein binding regions as well

- Using simple hydrophobicity would be difficult to predict binding regions
- High SAP regions correlate well with protein binding regions

SAP predicts protein binding regions of antibody

High SAP regions correlate well with protein binding regions

SAP predicts binding regions of EGFR

- Using simple hydrophobicity would be difficult to predict binding regions
- High SAP regions correlate well with protein binding regions

26

SAP predicts binding regions of EGFR

High SAP regions correlate well with protein binding regions

Developability ranking ? (Aggregation propensity ranking)

28

SAP for developability ranking

SAP will be optimized for developability ranking

Improved drug discovery process using SAP

SAP improves the determination of sites for payload conjugation

should be partially exposed and away from high-SAP regions

Summary: Developed the SAP tool to aid in discoverycommercialization

SAP

Technology

Predicts aggregating regions

Predicts binding regions

Developability ranking

Find stable payload conjugation sites

Macroscopic modelling

Macroscopic modeling and mathematical connection between long-term and short-term stability tests

Need model of aggregation for a given temperature and the temperature dependence of the rate constants

34

Monomer loss kinetics: Examples of 1st -, 2nd-order fits

Temperature dependence: Kinetics are Non-Arrhenius

$$k = A \exp(-E_a / RT)$$
$$\ln k = \ln A - E_a / RT$$

- A: pre-exponential coef.
- E_a: activation energy
- R: gas constant
- T: temperature

Need Non-Arrhenius model

VFT method

(Vogel, Fulcher, Tammann)

• Where T_o is a reference temperature at which the relaxation time relevant to molecular displacements becomes infinite, i.e. where the entropy changes suddenly Arrhenius: $k = A \exp(-E_a / RT)$ VFT: $k = A \exp(B / (T - T_o))$

• Liu et al. found that $T_o = T_m$ for H exchange rates (DNA melting T)

• Can we also use VTF for highly non-Arrhenius behaving aqueous protein samples?

• We have found a similar trend for MAB2 but a higher T for MAB1

H. Levine (ed.), Amorphous Food and Pharmaceutical Systems, 2002, p131 Angell *et al.*, J. Appl. Phys., Vol. 88, No. 6, 15 September 2000 Liu *et al.*, Physics Letters A 361 (2007) 248-251

Prediction of MAB1 aggregation with the model fitted to short term data

2nd order reaction

LT: long-term data PD: predicted kinetics

Prediction of MAB2 aggregation with the model fitted to short term data

2nd order reaction

LT: long-term data PD: predicted kinetics

Long-Term vs	<u>MAB1</u> 5C time 2 nd LT			<u>MAB2</u> m60C time 2 nd LT			
Predicted	0 3 6 12	99.2 99.19 99.17 99.13	99.2 99.3 99.3 99	0 3 6 9 12	99.21 99.06 98.97 98.89 98.8	99.21 99.08 99.02 98.94 98.9	
	12C			5C			
•Time in months	time 0 3 6 12	2nd 99.2 99.17 99.13 99.05	LT 99.2 99.5 99.5 99.2	time 0 3 6 9 12	2 nd 99.21 98.94 98.67 98.4 98.14	LT 99.21 98.9 98.65 98.6 98.5	
al Tulon a tarma data	25C				25C		
•LT: long-term data	time	2 nd	LT	time	2 nd	LT	
•2 nd order reaction	0 3 6 12	99.2 99.02 98.84 98.47	99.2 99 98.6 97.6	0 3 6 9	99.21 98.45 97.69 96.86	99.21 97.95 97.2 95.6	
fit	40C			40C			
	time		LT		2 nd	LT	
	0 1	99.2 98.2	99.2 98.2	0 3	99.21 95.01	99.21 95.69	
	3 6	96.4 93.81	98.6 93.5	6	91.1	92.06	

Molecular QbD for the Design of Protein-Cosolute Interactions

Starting Point: Arginine

- Well known stabilizer.
- Action of stabilization unknown.
- Seems to interact net neutrally with biomolecules.
- Can we better understand arginine and develop better additives?

Proposed mechanism by which arginine inhibits aggregation

Reaction Co-ordinate

Preferential Interaction Coefficients

- Measures the degree of attraction or repulsion of cosolutes to proteins.
- Positive values means that cosolutes are attracted to the protein. (e.g. Gnd, urea)
- Negative values mean that cosolutes are repelled from the protein. (e.g. sucrose, mannitol)
- Indicates the degree to which an additive stabilizes the folded state of a protein.

Arginine Preferential Interactions

•Arginine has a concentration dependent preferential interaction.

Schneider, C.P. and B.L. Trout, J. Phys. Chem. B, 2009. 113(7): p. 2050-2058.

Computational Methodology

MD simulation of aqueous arginine solutionsTemperature: 278-368 KConcentration: 0.25-2.75 molal

MD simulation of protein in aqueous arginine solution
Protein: α-Chymotripsinogen A, Lysozyme
Temperature: 298 K

Computing Preferential Interaction Coefficients

Preferential Interaction coefficient (Γ_{23}): excess number of additive molecules in local domain

$$\Gamma_{23} = \left\langle n_3^{II} - n_1^{II} \left(\frac{n_3^I}{n_1^I} \right) \right\rangle$$
$$= \rho_3(\infty) \int (g_3(r) - g_1(r)) dV$$

$$(g_3(r) - g_1(r)) = \mathbf{0}$$

$$\Gamma_{23}(r,t) = n_3(r,t) - n_1(r,t) \left(\frac{n_3 - n_3(r,t)}{n_1 - n_1(r,t)}\right)$$

 n_3 total number of cosolvent molecules n_1 total number of water molecules

Preferential Interaction Coefficients for Arginine

experimental preferential interaction data is only available upto 0.7 molal.

Interactions in aqueous arginine solutions

Arginine tends to from clusters via hydrogen bonding and Gdn Stacking 49

Interactions between arginine and A protein

Contact coefficient = local/bulk concentration

- Arginine interacts with charged and aromatic residues.
- Interaction with aromatic residues could stabilize unfolded intermediates.
- Clustering in arginine solution leads to enhanced crowding.

Neutral Crowder Excipients

$$\Gamma_{XP} \cong 0$$
$$\delta \Delta G_u^{\circ} \cong 0$$

- We have created novel compounds that:
 - Solvate proteins much like water
 - Have little influence on the folding equilibrium
 - Specifically inhibit protein association
- We call such excipients "neutral crowders".

Baynes, B.M. and B.L. Trout, Biophysical Journal, 2004. **87**(3): p. 1631-1639. Baynes, B.M., D.I.C. Wang, and B.L. Trout, Biochemistry, 2005. **44**(12): p. 4919-4925.

Aggregation: High Temperature

Aggregation: Body Temperature

Aggregation Rates vs. Concentration

Other Excipients

Additive (Isotonic Concentration)

T = 52.5 °C, 20 mM Sodium Citrate, pH 5

Shelf Life Predictions (5% Loss)

k/k ₀ (aCgn Aggregation)						
	10	mg/mL a	40 mg/mL aCgn			
	37 °C	45 °C	52.5 °C	37 °C	45 °C	
Compound A	4.6%	6.1%	5.3%	5.9%	6.6%	
Compound B	1.5%	2.5%	3.7%	2.7%	1.8%	
ArgHCl	23.7%	27.0%	30.3%	21.7%	36.0%	

Aggregation suppression is fairly constant at various temperatures and concentrations.

Shelf Life extended from a few days to several months.

<u> 95 I</u>		<u> </u>				~ /	
T (°C)	No Additive			$rginine \\ k_0 = 0.25$	Compound B $k/k_0 = 0.025$		
52.5	2	Minutes	8	Minutes	1.3	Hours	
45	2.1	Hours	8.4	Hours	3.5	Days	
37	8.6	Hours	1.4	Days	14	Days	
25*	3.4	Days	12	Days	5	Months	

10 mg/mL aCgn, 20 mM Sodium Citrate, pH 5 *Predicted Value (Arrhenius Plot of Low Temperature Data)

Summary of Molecular Simulation Approaches for Cosolutes

Gain Mechanistic Understanding

• Allow Rational Design

– E.g. additives

– Buffers

A very brief summary of the oxidation of therapeutic antibodies

Correlation between WCN and the Relative Rates of Oxidation

Expected Structural Effect

Fit to a two-state protein unfolding model $N \leftrightarrow U$

Extrapolation Analysis On the physical basis when there is no structural effect

Expect a non-Arrhenius behavior connecting high T and low T regions

A Phenomenological Model

One of the several models we developed

More buried met More exposed met Met in peptides

Structural effect is an activated process

Expression for Rate Constant

Use equilibrium condition, mass balance and kinetic expressions

$$k_{apparent} = \frac{1}{[O]_0} \underbrace{Ae^{\frac{AE^{\dagger}}{RT}}}_{1 + \frac{C^{\circ}}{[O]_0}} \underbrace{AG^{(t)}}_{e^{\circ}} \underbrace{AG^{(t)}}_{$$

Only when temperature is near the local T_m, structural effect results in non-Arrhenius

Conclusions

- New Strategic Approach: Molecular QbD for Integration of Discovery, Development, and Manufacturing. Objective: reduce over all time from Discovery to Market Delivery
- Areas of Impact:
 - Discovery
 - Developability/Manufacturability
 - Aggregation
 - Oxidation
 - Deamidation
 - Fragmentation
 - Payload Conjugation
 - Development

Conclusions

- Areas of Impact:
 - Discovery
 - Developability/Manufacturability
 - Aggregation
 - Oxidation
 - Deamidation
 - Fragmentation
 - Payload Conjugation
 - Development
 - Formulation
 - Stability modeling

MIT Summer Professional Course

July 12-14 MIT Short Course on Formulation and Stabilization of Biotherapeutics

<u>http://web.mit.edu/professional/short-</u> programs/courses/formulation_stabilization_biothera peutics.html</u>