







# Technology Challenges for Single Use Downstream Processing

# I SPE May 2010 Parrish M. Galliher



#### **Presentation Outline**

- Current Biopharm Industry trends and drivers
- Limitations of stainless steel mfg. technology
- Review of single use technologies
- Going beyond disposables and integrating the FlexFactory®
- New single use technologies on the horizon
- Case studies in novel single use manufacturing
  - Microbial mAb production and purification
  - Microbial swine flu production and purification
  - Economics of mAb EB and SMB purification
- Conclusions



### **Challenges Facing the Biopharm Industry**

#### **Industry Challenges**

- Global economic downturn
- Industry consolidation
- Fewer blockbusters
- Reimbursement pressure
- Excess capacity from higher titers, smaller pipelines, more potent drugs
- Personalized medicine = smaller markets
- Competition
  - Globalization Asian offshore capacity coming on-line
  - Emerging follow-on / biosimilars market



#### **Biopharm Landscape – Small vs Large Companies**

#### Small/new company

- Very tight VC funding
- 6-12 months of cash
- Reaching milestones = survival
- Less time to reach milestones
- No reserve cash for delays/errors
- Much more willing to partner vs take more expensive VC money
- Royalty/equity opportunity for CMOs

#### Larger established company

- Many consolidations stalling capacity investments
- Excess mfg. capacity
- More technology conservativetighter technology budgets
- Concerned about biosimilars and Asian competition
- Forced to evaluate more efficient manufacturing options
- Much more willing to partnerroyalty/equity opportunity for CMOs



#### **Traditional Stainless Steel Facilities**



#### **Traditional Stainless Steel Facilities**

- Prohibitive cost to build new mfg. capacity... \$2,000/sq ft
- \$200-\$400M total installed capital cost
- 4 year timeline for new capacity
- Risk of committing capital during early high-risk stage
- Expensive to operate
- Expensive to modify
- Limited long-term asset utilization
- Low terminal value (even lower in today's disposable environment)
- Many are obsolete before they are validated



# Future Kg demand/Biologic is decreasing: single use becomes commercial scale



### FlexFactory® Single Use Biomanufacturing: Escaping the Limits of Stainless Steel







Bioreactor 1982

### Bioreactor 1994

Xcellerex 2000L Bioreactor TODAY



# Single Use Technology Review

Products and vendors listed in the following slides are provided for reference and do not constitute a complete list or an endorsement of any specific vendor or product



# **Xcellerex family of single use bioreactors**

All XDRs have a 5:1 turn down ratio (Each can operate at 20% working volume)











XDR-50 XDR-200 XDR-500 XDR1000 XDR-2000

### XDR-10 and XDR-5000 in development



# **Established Downstream Single Use** Technologies

- buffer Storage bags
- buffer Mixers
- Sensors pressure, pH, conductivity, UV, flow
- Separations limited to filtration
  - Harvest
  - Virus removal / sterilization
  - Concentration / buffer exchange
- Purification membranes
- Tubing welders / connectors / sealers
- Integrating stainless and disposables connectors



# **Advantages of Single Use Systems**

Lead to

#### **Reductions in:**

- Cleaning
- Sterilization
- Engineering cost
- Equipment lead time
- Utility requirements
- Validation
- Quality / Regulatory burden
- Space
- Labor
- Waste generation

#### Improvements in:

- 20% reduced capital
- 15% reduced COGs
- 50% reduced facility buildout time
- 20% reduction in plant footprint
- Campaigned product flexibility
- one level increase in manufacturing quality
- 2 hr turnaround cycle time
- > 55% reduced environmental impact



### **Downstream – Buffer Mixing Systems**

- Applications:Media, buffer, product processing,<br/>formulation
- **Capacity:** 10 L to 10,000 L
- Vendors/Types: Hyclone MixTainer, LevTech/Sartorius levitated prop tank, Wave FlexMixer, Xcellerex XDM stirred tank
- Integration

**Challenges:** powder addition, connectors

Scale Up

Challenges:

powerful mixing, bags that flex to achieve mixing rely heavily on bag seam strength and durability



### Xcellerex XDM, XTM Temp Controlled Quad Single Use Mixers 100L, 200L, 500L, 1,000L











# **Cell Harvest – centrifugation, filtration**

| Application:              | Separation of cells from growth medium during perfusion or for terminal cell harvest.                                                                                               |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capacity:                 | Up to 100-200 L/hr                                                                                                                                                                  |
| <u>Vendors/Types</u> :    | Pneumatic scale (unifuge), Spectrum and<br>GE, WaterSep (recirc. hollow fiber),<br>Millipore POD system, Cuno, Pall depth<br>filtration. All product contact surfaces<br>disposable |
| Integration<br>Challenges | connectors                                                                                                                                                                          |
| Scale Up<br>Challenges    | recirculating systems: disposable tubing<br>not amenable to high flow rates and<br>pressures                                                                                        |



# **Dead End/Depth Filtration**

| Application:               | Clarification / sterilization of media, buffers<br>and process intermediates, cell harvest, and<br>removal of particulates.                 |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Capacity:                  | Syringe filters, 30" capsules, flat membrane generally available, (larger by custom order)                                                  |
| Vendors/Types:             | Millipore POD, Pall, Sartorius, Meissner, Cuno<br>– larger capsules coming available, many<br>available pro storilized and integrity tosted |
| Integration<br>Challenges: | connector compatibility                                                                                                                     |
| Scale Up<br>Challenges:    | >2000L capacity is lacking                                                                                                                  |



# **Tangential Flow Filtration**

| Application:               | Perfusion, cell harvest, purification,<br>concentration, and formulation / buffer<br>exchange |
|----------------------------|-----------------------------------------------------------------------------------------------|
| Capacity:                  | Up to 13 m <sup>2</sup>                                                                       |
| Vendors/Types:             | Spectrum HF, GE, WaterSep hollow fiber                                                        |
| Integration<br>Challenges: | disposable pump integration that is durable yet disposable                                    |
| Scale Up<br>Challenges:    | recirculating systems: disposable tubing not amenable to high flows/pressures                 |



### **Purification – Pre-packed Chromatography**

Application:binding or Flow-through removal of<br/>contaminants and/or product<br/>bind-and-elute purification of small or<br/>dilute process streams.

Capacity: variable

Vendors/Types: GE Healthcare, Repligen, Applied Biosystems

Integration /scale up Challenges:

GE supplies GE resins only with fixed bed height, largest scale

Repligen packs any resin to any height, limited to 10L columns



# **Purification – Membranes**

| Application:               | Flow-through removal of contaminants,<br>bind-and-elute purification of small or<br>dilute process streams. |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Capacity:                  | 20 L/min., 5g DNA binding capacity                                                                          |  |
| Vendors/Types:             | Pall, Millipore and Sartorius functionalized filter membranes.                                              |  |
| Integration<br>Challenges: | connectors, area                                                                                            |  |
| Scale Up<br>Challenges:    | less binding capacity compared to chromatography resins in general                                          |  |



# **Virus Reduction**

| Application:                  | Mechanical reduction of viral load by nanofiltration.                   |  |
|-------------------------------|-------------------------------------------------------------------------|--|
| Capacity:                     | 15 - 200 L/hr. (depending on pore size, filter medium & process stream) |  |
| Vendors/Types:<br>Integration | Millipore dead end, Pall dead end, Asahi-<br>Kasei                      |  |
| Scale Up<br>Challenges:       | larger scale requires more area                                         |  |



# **Vial Filling**

| Applications:              | Aseptic filling into vials                                                                         |
|----------------------------|----------------------------------------------------------------------------------------------------|
| Capacity:                  | Clinical to commercial {?}                                                                         |
| Vendors/Types:             | Millipore Acerta bag based filling system,<br>MedInstill injection filling/laser sealing,<br>Bosch |
| Integration<br>Challenges: | connectors                                                                                         |
| Scale Up<br>Challenges:    | not clear yet                                                                                      |



# Sensors

| Applications:              | Process wide                                                                                 |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| Capacity:                  | N/A                                                                                          |  |  |  |
| Vendors/Types:             | Wave Biotech, (pH, DO2), Flourometriz<br>Finesse and PreSens optical sensors,<br>microprobes |  |  |  |
|                            | Cytoxicity, irradiatability, fit up into bags,<br>tubing, dead zone elimination, signal      |  |  |  |
| Integration<br>Challenges: | response time                                                                                |  |  |  |
| Scale Up<br>Challenges:    | stability, non-fouling, validatable                                                          |  |  |  |



### **Economics of Disposables vs Stainless** courtesy Foulon et al, Roche June 2008

**Figure 3:** Start-up phase, highest savings (summary cost breakdown)



**Figure 4:** Regular production, highest savings (summary cost breakdown)





# Environmental Advantages of Disposables: Water Consumption & Waste Generation

#### Water Usage - Traditional (L per batch) Waste - Traditional WFI PW Cleaning TOTAL Process Aqueous Plastic 36,201 41.358 11,174 66,384 77,559 79,155 67

#### Water Usage - Xcellerex (L per batch)

| WFI   | PW | Process | Cleaning | TOTAL | Aqueous | Plastic |
|-------|----|---------|----------|-------|---------|---------|
| 9,957 | -  | 9,957   | -        | 9,957 | 11,554  | 189     |

- ~85% reduction in water usage & waste
- 3x increase in lbs of plastic usage & waste



www.xcellerex.com

Waste - Xcellerex

### Environmental Advantages of Disposables: Carbon Footprint

| POUNDS CARBON / BATCH          | Single Use | %     | Stainless | %     | Diff.    |
|--------------------------------|------------|-------|-----------|-------|----------|
| SIP                            | 0.0        | 0.0%  | 388.5     | 1.0%  | 388.5    |
| CIP                            | 30.5       | 0.2%  | 1,988.0   | 4.9%  | 1,957.5  |
| Transporting Plastic           | 148.5      | 0.8%  | 0.0       | 0.0%  | -148.5   |
| Pumping Water & Wastewater     | 3.7        | 0.0%  | 28.7      | 0.1%  | 25.0     |
| Steel Fab. Amortized per Batch | 2,970.7    | 16.6% | 7,723.8   | 19.2% | 4,753.1  |
| Polymerizing Plastic per Batch | 799.3      | 4.5%  | 0.0       | 0.0%  | -799.3   |
| Extruding Plastic              | 499.6      | 2.8%  | 0.0       | 0.0%  | -499.6   |
| WFI Still                      | 7,308.7    | 40.8% | 29,828.8  | 74.3% | 22,520.1 |
| Cleanroom Energy               | 132.1      | 0.7%  | 204.1     | 0.5%  | 72.0     |
| Incinerating Plastic           | 6,029.3    | 33.6% | 0.0       | 0.0%  | -6,029.3 |
| TOTAL                          | 17,922.4   |       | 40,161.9  |       | 22,239.5 |

Courtesy Leveen & Monge, ISPE Tampa Conference, 02 March, 2009

55% reduction in carbon footprint



# Going beyond just disposables Introducing the FlexFactory®

#### ● FlexFactory ™

- Portable mini-clean rooms
- Disposable mfg. equipment
- Automation eFactory<sup>™</sup>
  - Process control
  - e-process control/doc. software
  - On-Line quality assurance
  - On-line environmental monitoring



#### The Fully Integrated Disposable FlexFactory®









**Fully integrated** 

**GMP FlexFactory** 

# Going beyond just Single Use: Advantages of the FlexFactory®

Lead to

#### Reductions in:

- Cleaning
- Sterilization
- Engineering cost
- Equipment lead time
- Utility requirements
- Validation
- Quality / Regulatory burden
- Space
- Labor
- Waste generation

#### Improvements in:

- 20% 50% reduced capital
- 15% 30% reduced COGs
- 50% 70% reduced facility buildout time
- 20% 40% reduction in plant footprint
- Campaigned simultaneous product flexibility
- one three level increase in manufacturing quality
- 2 hr turnaround cycle time
- > 55% reduced environmental impact



# Economic comparisons – biopharm facilities stainless steel vs just disposables vs FlexFactory





# New technologies in Downstream Single Use Manufacturing

Single use tubular bowl centrifuge – Pneumatic scale Single pass ultrafiltration - Pall Pre-packed chromatography: GE, Repligen, Natrix

Simulated moving bed chromatography – Tarpon, Novasep

Expanded bed chromatography – Upfront

Genderless, re-useable sterile connectors



# Case studies: Microbial single use manufacturing:

1) Purification of mAb using:

- single use expanded bed
- single use prepacked simulated moving bed

2) Purification of Swine flu HA:- single use prepacked chromatography

3) EB and SMB economics



# **Traditional microbial mAb production**





# Single use microbial mAb production





# Microbial XDR-50L Single-Use Bioreactor



### Microbial turbo XDR-50

- 6 blade rushton turbine
- 6 blade upper pitched blade
- baffled
- 400 rpm
- 1000 hr-1 kLa
- Glycol jacket cooled
- Electronic exit gas condenser
- 370 OD
- 125 g/L DCW



#### Pseudomonas bacterial fermentations XDR-50 – HA subunit vaccine and antifluorescein mAb



Xcellerex

confidentia

# XDR-50 Pseudomonas (Pfenex, Inc.) bacterial fermentations – mAb titer (fully folded)





# Expanded Bed Protein A capture System now available in single use





# **Expanded Bed System** cell lysate load onto Protein A

Upfront Rhobust System/10 cm column 2 L Protein A Resin in Expanded Bed Mode Wash Cycle



**Figure F-3.** The 10cm Rhobust system during wash step following load of unclarified harvest lysate on Protein A resin.



## **Expanded Bed System – PA mAb elution**

Upfront Rhobust System/10 cm column 2 L Protein A Resin in Expanded Bed Mode Elution Cycle







### **Expanded Bed PA mAb Capture**





#### Single Use Simulated Moving Bed Process Flow Diagram - courtesy Tarpon Biosystems





### Single use simulated moving bed chromatography – beta system courtesy Tarpon Biosystems





# SMB Impact vs Batch Protein A Chromatography scale up example:

- 3.5 g/L mAb titer
- 2000L batch

|                            | <b>Batch</b> | <u>SMB</u> |
|----------------------------|--------------|------------|
| # columns:                 | 1            | 8          |
| productivity g/L-day:      | 360          | 2630       |
| processing time:           | 5 hrs        | 8 hrs      |
| liters PA resin:           | 88L          | 8L         |
| cycles/batch               | 2            | 19         |
| <b>\$ protein A resin:</b> | \$880,000    | \$80,000   |

courtesy Tarpon Biosystems





### **XDR-50 Pseudomonas (Pfenex, Inc) bacterial** fermentations - swine flu HA



![](_page_45_Picture_2.jpeg)

# Pre-Packed Chromatography HA subunit vaccine purification

![](_page_46_Picture_1.jpeg)

**Figure F-104.** The AKTA Ready chromatography system with a BioFlash 8cm IMAC disposable column in line.

![](_page_46_Picture_3.jpeg)

# **Pre-Packed Chromatography HA subunit vaccine purification**

![](_page_47_Figure_1.jpeg)

![](_page_47_Picture_2.jpeg)

![](_page_48_Figure_0.jpeg)

Xcellerex

#### Conclusions

• Single use technologies for downstream are improving:

- Expanded bed simplifies primary capture
- Prepacked chromatography facilitates plug and play
- SMB major breakthroughs in COGS, high titer capable
- FlexFactory: integrating downstream disposables with USP
  - Open platform, simultaneous multi-product manufacturing
  - 70% reduction on time to build/validate to GMP ready (9 mo.)
  - Reductions: capital: 60%, footprint: 40%, COGS: 30%: time 70%
  - Eco impact: -85% water use, -55% carbon footprint, 3 x increase in waste plastic

![](_page_49_Picture_10.jpeg)

# THANK YOU!

![](_page_50_Picture_1.jpeg)

170 Locke Drive, Marlborough, Massachusetts 01752

www.xcellerex.com

1.866.Xcellerex

![](_page_50_Picture_5.jpeg)

Successful Implementation of Single Use Systems for Commercial Scale Biomanufacturing: The Industry/Supplier Partnership

> Paul Slaman Shire HGT

James Dean Vogel, P.E. Process Facility Services

Shire We enable people with life-altering conditions to lead better lives

![](_page_51_Figure_4.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_53_Picture_0.jpeg)

![](_page_53_Figure_1.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_54_Figure_1.jpeg)

![](_page_55_Figure_0.jpeg)

![](_page_55_Figure_1.jpeg)

#### Shire HGT Single-Use Risk Assessment Program

- Considerations:
  - Regulatory
  - Industry Understandings
  - Process Requirements
  - Material and Equipment Science
- Today-State of the Industry
- Future-Ensure the program evolves with:
  - Changes in the Regulations and Industry
  - Successful vendor partnerships

![](_page_56_Figure_11.jpeg)

![](_page_57_Figure_0.jpeg)

![](_page_57_Picture_1.jpeg)

#### CFR 211.65 Equipment Construction

- (a) Equipment shall be constructed so that surfaces that contact components, in-process materials, or drug products shall not be reactive, additive, or absorptive so as to alter the safety, identity, strength, quality, or purity of the drug product beyond the official or other established requirements.
- (b) Any substances required for operation, such as lubricants or coolants, shall not come into contact with components, drug product containers, closures, inprocess materials, or drug products so as to alter the safety, identity, strength, quality, or purity of the drug product beyond the official or other established requirements.

![](_page_58_Figure_4.jpeg)

![](_page_59_Figure_0.jpeg)

![](_page_59_Figure_1.jpeg)

![](_page_60_Figure_0.jpeg)

![](_page_60_Picture_1.jpeg)

![](_page_61_Figure_0.jpeg)

![](_page_61_Figure_1.jpeg)

#### **MATERIALS REVIEW**

![](_page_62_Figure_2.jpeg)

![](_page_63_Figure_0.jpeg)

#### Drawings

- Certificates of Compliance
- Animal Free Statements
- Extractable Studies
- Leachable Studies
- Validation Studies
- Product Communication

#### Vendor information

- Client Forms and Responses
- Audits
- Vendor Communication

#### Lot Information

- Sterilization
- Certificates of Analysis

**Commercial Information** 

Supply Chain Information

![](_page_63_Picture_18.jpeg)

![](_page_64_Figure_0.jpeg)

![](_page_64_Picture_1.jpeg)

![](_page_65_Figure_0.jpeg)

- <u>Extractables</u>: Chemicals that can be removed from articles using appropriate solvents (e.g. polar and nonpolar) for the purpose of identification and quantification of potential leachables.
- <u>Leachables</u>: Chemicals that migrate from the article into the process fluid of interest (e.g. water, buffered solutions, drug product, etc.) under normal and/or accelerated conditions (typically exposure time and/or temperature). Leachables are typically a subset of extractables, but can also be created as a result of chemical reactions with other leachables and/or components.

![](_page_65_Figure_4.jpeg)

![](_page_66_Figure_0.jpeg)

![](_page_66_Picture_1.jpeg)

![](_page_67_Figure_0.jpeg)

![](_page_67_Figure_1.jpeg)

![](_page_68_Figure_0.jpeg)

![](_page_68_Picture_1.jpeg)

![](_page_69_Figure_0.jpeg)

![](_page_69_Figure_1.jpeg)

#### Shire HGT Single-Use Risk Assessment Program

- The Goal is to apply the industry's best practices to improve Shire's level of control of their Components, Assemblies and Materials
- Considerations:
  - Regulatory
  - Industry Understandings
  - Process Requirements
  - Material and Equipment Science
- Future-Ensure the program evolves with:

#### Successful Vendor Partnerships!