Process Improvement?

Grandpa’s Car

Future Grandkid’s Car
National & Product/Process-wide Approach
(but how many have adopted it?)

Training Conducted on December 4th, 2012
Food & Drug Administration; CBER & CDER Offices
Rockville, Maryland
35-45 Inspectors present
Guidance Evolution from 1987 to 2011

1987
- Single protocol approach
- Static event, disconnected
- 3 batch requirement almost explicit
- More deliberately prescriptive
- Simply a confirmation
- Criticality is binary (yes or no)
- It is what it is
- Final report jumps to conclusions

2011
- 3 phased approach
- Lifecycle evolution, sustainable
- No longer a magic run number
- Risk-based decision-making
- Emphasizes up front learning
- Criticality is a continuum
- Greater clarity of expectations
- Allowing the final report to “return” to process design allows for learning
Learning Progression

Poor design, planning, process and understanding

Unexplained variation, Product and process problems, Process not in control. **Major Learning!** Potential substandard product on market

PQ checklist exercise w/ little understanding

Poor, minimal design

Good planning, expected result

Continued Verification, Process Learning and improvement

Sound, thorough process Qualification confirms design

Comprehensive process design, Scientific process understanding

Borrowed from Grace E. McNally
Linear Compartmentalization?
Lifecycle Approach
Approach to Process Validation

Process validation involves a series of activities taking place over the lifecycle of the product and process. The guidance describes the process validation activities in three stages.
Process Validation Stages

Stage 1: Process Design
- Building and capturing process knowledge
- Establishing a control strategy

Stage 2: Process Qualification
- Design of facility and qualification of utilities & equipment (IQ/OQ/PQ)
- Process Performance Qualification (PPQ)

Stage 3: Continued Process Verification
- Implement control strategy
Schematic of Stages

(New Process or Product)

Stage 1
Process Design

Stage 2
Process Qualification (PQ)
- Design of Facilities & Qualification of Equipment and Utilities
- Process Performance Qualification (PPQ)

Stage 3
Continued Process Verification

Ref: Grace E. McNally FDA (Guide Leader) Sept 15, 2010
What does this mean?

- Lifecycle approach – product conception through commercialization

Focusing exclusively on qualification efforts without also understanding the manufacturing process and associated variations may not lead to adequate assurance of quality.

- FDA Guideline Section IIB
Process Validation Benefits to Industry

Knowledge vs. Proven Acceptable vs. Normal Operating Range

- Knowledge that the product will meet requirements
- Ability to predict product quality / assess impact of changes prior to OOS
- Reduced deviations – Reduce time to market, reduce release time
- More efficient / effective deviation resolution

Target Value

Knowledge Range

Proven Acceptable Range

Normal Operating Range
Schematic of Stages (Legacy Process or Product)

Stage 1
Process Design

Stage 2
Process Qualification (PQ)
- Design of Facilities & Qualification of Equipment and Utilities
- Process Performance Qualification (PPQ)

Stage 3
Continued Process Verification

Variation Detected
Evaluate/Confirm
Distribute

Ref: Grace E. McNally FDA (Guide Leader) Sept 15, 2010
Activities for Legacy Products

• Demonstrate **control over variation** through the examination of data from previously manufactured product

• BEST PRACTICE:
 – Review a minimum of 10 lots over the last 3 years or at least thirty (30) batches
 – Examine data for critical process parameters for each step of the process and include:
 • all in-process testing and QC results
 • final product testing results
 • specifications.
 – Examine data for critical parameters for overall state of control for each batch
STAGE 1: PROCESS DESIGN

Expectations

1) Define risk based methodology and team structure
2) Define CQA
3) Perform Risk Assessment
4) Design of Experiments & Quality by Design
4) Define applicable CPP’s
5) Determine analytical process variation
6) Demonstrate variation correlation
7) Establish control strategy
8) Assess data

Best Practice

1) Engage Process Development Scientist & Engineers early
2) Get it in writing
3) Ensure scalability
4) Create event driven Process Flow
5) Get an early start on Method Validation
Process Risk Assessment Tracking

List Process Steps and CPP / CQA

Perform Risk Assessment and List RPN

Determine MS Validation Status

Evaluate Rationale for Specification

Check Data Quality, Process State of Control

<table>
<thead>
<tr>
<th>Process Flow</th>
<th>CPP</th>
<th>Risk</th>
<th>Measure System Validated</th>
<th>Spec Rationale</th>
<th>Process Quality Data updated</th>
<th>Statistical Capability Assessment</th>
<th>CQA Monitor In Normal Product (Yes / No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing</td>
<td>383</td>
<td>No / Yes</td>
<td>No</td>
<td>Linearity Matrix</td>
<td>Mix - Report 1200</td>
<td>Due 12/13</td>
<td>Due 11/13</td>
</tr>
<tr>
<td>Filter</td>
<td>110</td>
<td>Yes – MVR 4321</td>
<td>Tech sheet</td>
<td>Yes - Report 102</td>
<td>In process</td>
<td>Chi Square</td>
<td>3.1</td>
</tr>
</tbody>
</table>
STAGE 1: PROCESS DESIGN

Expectedations

1) Defined process
2) Completed CPP/CQA Matrix including rationale
3) Completed risk assessment
4) Defined control strategy including limits and monitoring methods
5) Defined risk reduction plan
6) Summary of test method validation
7) Statistical assessment
8) Process variation

Best Practice

1) Make it accessible
2) Make it searchable
3) Make it clear!
4) Allow amendments
 Expectations

1) Confirm Facility, Equipment, Utilities “fit for purpose” check
2) Develop PPQ Protocol including:
 a) Definition of testing methodology and team structure
 b) Definition of statistical terms and formulas
 c) Applicable references to stage 1 summary report
 d) Control strategy
 e) Number of batches
 f) Sampling Plan
 g) Create control charts
 h) Acceptance Criteria / Investigation process for both intra and inter batch variability.
 i) Training record
STAGE 2: PROCESS QUALIFICATION

Expectations

3) Train Operations and Analytical Team
 a) Manufacturing Processes
 b) Statistical Process Control trending or charting begins
 c) Updated SOP’s
 d) Batch record review
 e) Risk assessment review
 f) CPP/CQA Matrix review

4) Execute Protocol
5) Revise risk assessment and CPP/CQA

Best Practice

1) Plan extra runs
2) Prepare for deviations & conduct ‘in control’ approvals
3) Follow in-process results closely
Variability Assessment

- Overall Variability = Variability_{Process & Product} + Variability_{Measurement System}
- Measurement System Analysis Objectives
 - Estimation Variability_{Measurement System}
 - Comparison Variability_{Measurement System} vs. Variability_{Overall}
PPQ and example control chart

• Confirms process design and demonstrates performance
• Completed before commencing commercial distribution
• Supported by data from commercial scale batches (+ lab and pilot studies)

• Used to qualify manufacturing conditions established in development
• Strongly recommend objective measures (e.g. statistical)
STAGE 2: PROCESS QUALIFICATION

Expectations

1) Summary of results
2) Confirm Process Performance value
3) List of CPP’s by Risk Priority Number
4) Control system
5) Determine confidence intervals
6) Justification for reduced testing ("hand-shake" to Stage 3)

Best Practice

1) Compile results in real time
2) Utilize someone well versed in statistical methods
3) Leave a well documented rationale as to which Attributes to monitor and why
How many runs?

TECHNOLOGY/APPLICATION

Risk-based Methodology for Validation of Pharmaceutical Batch Processes

FREDERICK WILES, ASQ CQE*

ProPharma Group, Inc., 10975 Benson Dr. Suite 330, Corporate Woods Bldg. 12, Overland Park, Kansas 66210 ©PDA, Inc. 2013

ABSTRACT: In January 2011, the U.S. Food and Drug Administration published new process validation guidance for pharmaceutical processes. The new guidance debunks the long-held industry notion that three consecutive validation batches or runs are all that are required to demonstrate that a process is operating in a validated state. Instead, the new guidance now emphasizes that the level of monitoring and testing performed during process performance qualification (PPQ) studies must be sufficient to demonstrate statistical confidence both within and between batches. In some cases, three qualification runs may not be enough. Nearly two years after the guidance was first published, little has been written defining a statistical methodology for determining the number of samples and qualification runs required to satisfy Stage 2 requirements of the new guidance. This article proposes using a combination of risk assessment, control charting, and capability statistics to define the monitoring and testing scheme required to show that a pharmaceutical batch process is operating in a validated state. In this methodology, an assessment of process risk is performed through application of a process failure mode, effects, and criticality analysis (PFMECA). The output of PFMECA is used to select appropriate levels of statistical confidence and coverage which, in turn, are used in capability calculations to determine when significant Stage 2 (PPQ) milestones have been met. The achievement of Stage 2 milestones signals the release of batches for commercial distribution and the reduction of monitoring and testing to commercial production levels. Individuals, moving range, and range/omega charts are used in conjunction with capability statistics to demonstrate that the commercial process is operating in a state of statistical control.
Commercial Distribution

• Basis for Commercial Distribution

“Each manufacturer should judge whether it has gained sufficient understanding to provide a high degree of assurance in its manufacturing process to justify commercial distribution of the product.”

FDA Guideline Section IIB
STAGE 3: CONTINUED PROCESS VERIFICATION

Expectations

1) Establish an SOP / Methodology
2) Variable monitoring frequency, alert & action levels reviewed for ‘in-control’ approval
3) Revise Batch records
4) Revise CAPA / Change control process
5) Utilize CPP/CQA matrix including potential revision of alert & action levels
6) Record and trend CQA batch results
7) Report CQA trends

Best Practice

1) Create a Program
2) Hire a Full Time manager
3) Be proactive!
4) Review OOS, CAPA, Deviations
5) Make results visible to all
6) Bring the Cross Functional Team together – Often
Example of Critical Process Summary Table

<table>
<thead>
<tr>
<th>Critical Operating Parameter</th>
<th>Normal Operating Range</th>
<th>CPV Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon feed rate</td>
<td>Target ± 15%</td>
<td>Not subject to SPC; however, Important to monitor controller variability, so will plot glucose feed profile for comparison (overlay) with previous batches</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In-Process Control</th>
<th>Limit(s)</th>
<th>CPV Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO</td>
<td>≥ 10%</td>
<td>Not subject to SPC; characterization data shows that any value above 10% is sufficient for consistent fermentation performance; no routine trending required, but any IPC failure will be fully investigated for impact to the validated state</td>
</tr>
<tr>
<td>Total Acid Addition Volume</td>
<td>≤ 6.0 kg</td>
<td>Known to have direct impact on product quality and subject to SPC; parameter will be control charted</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In-Process Acceptance Criterion</th>
<th>Acceptance Criterion</th>
<th>CPV Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Wet Cell Weight</td>
<td>> 250 g/L</td>
<td>Important indicator of process consistency and subject to SPC; parameter will be control charted</td>
</tr>
<tr>
<td>Culture Purity (Plating Method)</td>
<td>No Contaminating</td>
<td>Not subject to SPC; existing quality systems Organisms would ensure that a failure would result in batch termination.</td>
</tr>
<tr>
<td>Final Product Titer</td>
<td>≥ 3.0 g/L</td>
<td>Important indicator of process consistency and subject to SPC; parameter will be control charted</td>
</tr>
</tbody>
</table>
Unit Operations Risk Assessment

<table>
<thead>
<tr>
<th>CQA</th>
<th>Process Step</th>
<th>Granulation</th>
<th>Drying</th>
<th>Milling</th>
<th>Blending</th>
<th>Compression</th>
<th>Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay</td>
<td></td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Blend Uniformity</td>
<td></td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Impurity</td>
<td></td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Appearance</td>
<td></td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Dissolution</td>
<td></td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Justification (High Rating Only)</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Blending can affect blend uniformity, assay and dissolution profile</td>
<td>Compression can affect content uniformity based on PS variability, flow and weight variation</td>
<td>Coating can affect final appearance and release rate</td>
</tr>
</tbody>
</table>
STAGE 3: CONTINUED PROCESS VERIFICATION

Expectations

1) Summary of results including assessment and interpretation
2) Routine monitoring with warning of ‘significant’ trends
3) Control system augmented through investigative learning
4) Eliminates testing into compliance
5) Justification for continued testing of CPP’s

Best Practice

- Process Metrics Report
- Annual Product Report

1) More than just annual requalification
2) Analysis of Trends

Graph showing trends over time.
Continued Process Verification

CGMP requirements:

The collection and evaluation of information and data about the performance of the process will allow detection of undesired process variability. Evaluating the performance of the process identifies problems and determines whether action must be taken to correct, anticipate, and prevent problems so that the process remains in control (§ 211.180 (e)).
Continued Process Verification

• Goal – to continually assure that process remains in a state of control
• Collection and evaluation of data will allow detection of process drift
• Evaluation should determine whether action must be taken
• On-going program to collect and analyze data must be established
• Statisticians can develop the data collection plan & methods
• An alternative approach in which manufacturing process performance is continuously monitored and evaluated.

• Incoming materials or components, in-process material and finished products

• Verification of attributes, parameters and end points, and assessment of CQA and Critical Process Parameter (CPP) trends

• Use of tools to support (PAT, NIR, MSPC, etc.)
• Other Factors
 – Compliance with GMP principles & requirements
 – Prior development & manufacturing knowledge
 – Complexity of product/manufacturing process
 – Process should be verified on commercial-scale batches prior to marketing
Is there a conclusion?

• Know your process
• Understand your variability
• Build a Control Strategy early
• Establish a lifecycle
• Monitor the process and analyze your results
• Continued process improvement will lead you to the Future!