Massachusetts Accelerator for Biotechnology (MAB):

“Helping Biotech Companies in Transition”

Stephen W. Fitzpatrick Ph.D.
DPS Biometrics Inc.

MAB Facility Functions

- Biotech Companies in Transition
- Biotech Products (Pre-clinical)
- Biofuels, Biomaterials and Biochemicals
- Education: College and Public
- Research and Development
Architectural Elements

- Building shape modeled on classic enzyme-substrate “transition state”
Architectural Elements

- Building shape modeled on classic enzyme-substrate “transition state”
- Close interaction between public spaces and operations suites
- Careful maintenance of confidentiality
- Multi-product operation
- “GMP-like” operation
- Building 27,745 sq. ft. designed to be expanded westwards
- LEED certified

Four Flexible Suites with Support Spaces

- Production Suites
- Cell Culture
- Microbial Fermentation
- Microbial Solutions Prep
- 2 Purification w/ Cold rooms
- Wash & Decon
- 5L PD train
- Office Suites
- R&D Lab
- Train & Decon
- Cell Culture Solutions Prep
- Public Gallery
- Lecture Halls
- R&D Lab
- QC Lab
MAB Designed as Pilot Facility

Supporting Infrastructure:
- Equipment agnostic: skid and single use friendly:
- USP grade purified water, clean steam, gases, grey water, hot water
- Multiple utility panels per suite
- Segregated HVAC for mammalian, microbial and purification

Mammalian Suites:
- Up to 250L single use or S.S. culture
- Unidirectional flow in suite
- Dedicated purification suite(s)
- Separate solutions prep room

Microbial Suites:
- 50-300L stainless steel fermentation
- Unidirectional flow in suite
- Dedicated purification suite(s)
- Separate solutions prep room

Public Gallery

Building Systems

- Energy consumption
 - LEED certification compliance achieved
 - Energy consumption ("full tilt") 3,400 kwhr/sqm/yr (below average)
 - 20% energy recovery via RTU
- Building is ready for installation of a cogeneration unit
 - Natural gas powered
 - Alternative source of power
 - Pad and conduit already laid
- Piping quality and materials cost-effective/appropriate for duty
 - High grade 316L stainless where needed
 - Sanitary polypropylene
 - PVC where allowable
- Aqueous waste
 - Collection, pH neutralization, discharge to sewer
Process Utilities

- Utilities distributed to each operational suite via utility panels
- Circulating USP purified water (RO/DI)
- Clean steam (for humidification and SIP)
- Building hot water to solutions preparation suites
- "Grey" water
 - From RO/DI reject, USP “off-spec”, USP overflow, soft water
 - Re-use for initial caustic flush for CIP
- Cleaning in Place: Mobile skids in suites
- Bio-waste collection and thermal treatment
- Clean compressed air (oil-free, dried and filtered for process)
- Medium pressure steam 100 psig electric powered for process heating and decontamination
- Gasses – oxygen, carbon dioxide and nitrogen supplied in suites
- Chilled water (glycol brine) circulated at 1 deg. C.

HVAC Design

- ISO-8 areas – 30 air changes per hour
- ISO-7 areas (purification suites) 60 air changes per hour
- Segregated air handling zones for microbial, cell culture, purification, solutions preparation and glass wash suites
- Negative Pressure for bio-containment and solvent handling rooms
- HEPA filtration at air handler (extends room envelope definition)
- Relative Humidity: 55% +/- 5%
- Clean steam humidification
- Building heating via natural gas-fired hot water heaters
Design Principles for “GMP-Like”

- “Future-proofing” a pre-IND facility for controlled production and smooth handover to CMO or transition to future GMP production;

- Present commissioning for all systems --- BUT ---- further documentation/qualification needs are:

 - For HVAC and critical utility systems: USP water, clean steam, clean compressed air
 - Comprehensive, final URS for the facility
 - Gap or FMEA risk analysis for handover to and consistency with future CMO or GMP operation;
 - Base line zero-use qualification/documentation;

 - Process Utilities (present and future)
 - USP produced, stored and distributed (needs C and Q)
 - Clean steam produced and distributed for equipment SIP and humidification (needs C and Q)
 - WFI initially purchased as needed (later can condense clean steam for larger volumes)
 - Grey water – operation to be qualified for CIP use and performance monitored by cleaning quals.

 - Establishment of facility operational practices consistent with CMO or future clinical production
 - Maintenance re-qualification;
 - Routine QC testing of critical utilities;
 - Site change control;
 - Clean room recertification;

...Further Design Principles

- Cost-effective flexibility for different biopharmaceutical process types
 - Equipment agnostic
 - Cell culture – SUB’s, S.S. Bioreactors, Incubators (tissue regeneration), DSP equipment
 - Microbial – SUB’s or S.S. fermenters, DSP equipment
 - Purification suites – Chromatography, Ultrafiltration, Filtration, etc.
 - Utilities distributed to multiple utility panels in operations
 - Accommodating solvents in purification suites and solutions preparation
 - Accommodating need for cold-room operation for purification steps
 - Biofuels, biochemicals and biomaterials production

- Cost effective LEED Certification (LEED Certified)

- Process Development Labs (5 liter)

- Operations training (Lab and production scale)

- Student “On the Job” experience

- Education and Public Relations
Acknowledgements to Design Team and Management

- Elkus Manfredi, Architects
- WSP Flack and Kurtz, Building Engineers
- JSN Associates, Structural Engineers
- Copley Wolfe Design Group, Landscape
- Sebesta Blomberg, Commissioning
- Richard Moore, LEED Consultant