Continuous Biomanufacturing Maurizio Cattaneo President bioVolutions Inc. 15 January 2015 Connecting a World of Pharmaceutical Knowledge

Continuous Manufacturing of Mabs

Automated processing times with fewer steps

- Accelerated production of antibody
- Increased efficiency
- No manual handling, increased safety

Smaller equipment and facilities

- More flexible operation
- Reduced inventory
- Lower capital costs, less work-in-progress materials
- Smaller ecological footprint

On-line monitoring and control for increased product quality assurance in real-time (PAT)

- Amenable to Real Time Release Testing approaches
- Consistent quality

Pilot Study

- Monoclonal Antibody A-mAb
- 2L-50L HyClone SUB
- RefineTech ATF Perfusion
- Delta V Control Tower
- 30 day continuous run

11

${\hbox{\it CQAS}}$ (eg. Glycosylation, HCP, DNA, Aggregation)

• Product Variants (eg. galactosylation, afucosylation)

IgG1	% HighMan	% G0	% G1	% G2	% Sialic	% Gal Alpha	% Core Fucose
A-Mab	7±5	71±10	19±10	3±10	1±5	0±5	91±20
B-Mab	1±5	78±10	17±10	4±10	2±5	0±5	94±20
R-Mab	2±5	46±10	40±10	12±10	3±5	0±5	95±20

Process CQA	Acceptable Ranges
НСР	0-100ng/mg
DNA	<10 ⁻³ ng/dose
Aggregates	0-5%

2

QbD: Design of Experiments (DoE) (Taguchi L9)

Experiment/ Pattern	Temperature (ºC)	рН	Glucose (g/L)
1 /	36.5	7.2	0
2 / -00	36.5	7	1
3 / -++	36.5	6.8	3
4 / 0-0	36.0	7.2	1
5 / 00+	36.0	7	3
6 / 0+-	36.0	6.8	0
7 / +-+	35.5	7.2	3
8 / +0-	35.5	7	0
9 / ++0	35.5	6.8	1

Upstream Overview

- Produces High Titers (~2 g/L)
- Reduce Media Volumes by minimizing the Perfusion Rate
- Glucose and Lactate Control the Perfusion Rate

17

Results: Upstream Design Space (DS) based on Glycosylation CQA

IgG1	% HighMan	% G0	% G1	% G2	% Sialic acid	% Gal Alpha	% Core Fucose
A-Mab (Test Article)	0	54	39	7	2	0	97
A-Mab (Reference)	7±5	71±10	19±10	3±10	1±5	0±5	91±20
B-Mab (Test Article)	0	85	15	1	0	0	96
B-Mab (Reference)	1±5	78±10	17±10	4±10	2±5	0±5	94±20

Downstream Strategy

- Replace interim holding tanks with peristaltic pumps to perform continuous downstream purification
- Load perfusate onto <u>Single</u> Protein A column
- Synchronize the purification cycle (Load, Wash, Elute, Regenerate) with the upstream rate of perfusion

Continuous Purification

- Produces purified antibody continuously
- Reduce the amount of Protein A resin by ~ 20fold
- The cycle time controls the rate of purification
- HCP < 7 PPM which simplifies the downstream processing

23

Cost Analysis of Continuous Manufacturing

Assumptions used for COGS model					
Parameter	FB	СМ			
Seed Train	20L. 80L. 400L. 2.000L	500mL, 20L, 100L			

Parameter	FB	СМ	
Seed Train	20L, 80L, 400L, 2,000L	500mL, 20L, 100L	
Production Bioreactor	Up to 10,000L	Up to 1,000L	
Product Titre	2.5 g/L	0.8 g/L	
Growth & Production Phases	3 days per seed	3 days per seed	
	13 days in production	32 days in production	
Media Consumption	Up to 10,000L	1.8 vvd	
Media Cost	\$20/L	\$5/L	
Protein A Consumption	300L (\$3.6M)	20L (\$240K)	

25_

Results at 500Kg / year

- A comparison of fed-batch to perfusion with the ATF System at "large" scale:
 - Perfusion utilizes a smaller footprint and
 - Lower capital investment costs
 - And has lower operating costs
- The advantage of disposable bioreactors reduces with increasing bioreactor size, as required 500kg/year, disposable bioreactors

Capital (US\$)	106.7M	33.1M
Floor Area (m²)	4,012	2,447

 Capital (US\$)
 103.9M
 44.1M

 Floor Area (m²)
 5,096
 3,152

26

Summary of COGs Model

- A ~\$30m capital budget could give you a facility that annually produces:
 - 50Kg of antibody in FB mode in stainless steel tanks
 - 500Kg of antibody in perfusion mode in disposables.
- If you had 10 products to manufacture, and need 50Kg of each per year:
 - \$100m capital is required for a fed-batch facility, with no spare capacity
 - \$30m capital is required for the perfusion facility, with 20% spare capacity

27

Summary

Perfusion will be adopted where flexibility, lower capital investment and facility costs, and operating at smaller scales are primary decision-driving factors

-Eric Langer, Pharmaceutical Processing, 2014

- Continuous Biomanufacturing of Monoclonal Antibodies produces high titers and good quality product in line with QbD principles
- Equipment is utilized more efficiently and the equipment footprint is much smaller
- Faster production of mAbs compared to Fed-Batch, reduces manufacturing time by 4 months
- The Capex for a new facility is significantly lower than conventional batch facilities

28

Acknowledgements

The Team:

Dr. Remco Spanjaard, Chief Scientific Officer
Dr. Snehal Padhye, Director Analytical Services
Mark Henry Kamga, MSc., Technical Supervisor
Jine-Jine Li, MSc., Analytical Supervisor
Tom Roper, BSc., Technical Operator
Dr. Myron Dittmer, Chief Quality and Regulatory Officer
Ciro Whooley, MBA, Chief Financial Officer

