

Cell culture / Fermentation Growth of appropriate cells, typically in a bioreactor or fermenter, to produce product of interest

Primary Product Recovery

Primary Product Recovery or Primary Clarification is a:

Solid : Liquid Separation

Whole Cells : Liquid Phase containing product

+ Cellular Debris

Product Transmission is KEY Objective

Separation Efficiency dependent on:

- Amount of Solids
- Particle Size
- Viscosity

Primary Product Recovery

Recovering product that has been produced by cell culture or fermentation

- Clarification of cell / fermentation broths (removal of whole cells and cellular debris) to recover product (typically soluble)
 - EXTRACELLULAR EXPRESSION
- Concentration and recovery of whole cells prior to cell disruption / lysis to release product (soluble or insoluble)
 - INTRACÉLLULAR EXPRESSION

Commonly Encountered Cell Types						
		May 1				
		Bacterial	Mammalian	Fungal	GMO Yeast	
	Example	E. Coli	CHO (Chinese Hamster Ovary)	Penicillium	Pichia Pastoris	
	Cell Size	0.5 – 0.8µm	10 - 100μm	3µт	14µm +	
	Potential Volumes	30,000 L	100 - 25000 L	100,000 L	30,000 L	
	Typical Cell Densities	2 – 5% w/v 20 – 50 g/l	1 – 5 x 10 ⁷ cells /ml	40 – 50% w/v (400 – 500 g/l)	40 – 50% w/v (400 – 500 g/l)	
	Product Location	Mainly Intracellular Some Extracellular	Extracellular	Extracellular	Extracellular	
To large	Example	Antigen Binding Fragments (FAbs)	Monoclonal Antibodies	Antibiotics Industrial Enzymes	Small Peptides and proteins (e.g. Insulin)	

Process-Related Impurities

- Impurities derived from the drug manufacturing process
 - Include Host Cell Proteins (HCPs), host cell DNA
 - Antibiotics, cell culture media components...
 - Column/filter extractables and leachables (protein A)
- All must be removed during downstream processing, using various methods, including chromatography
 - Require different strategies, according to the nature of the impurities, their concentration, and the target protein.

Tangential Flow Filtration

Microfiltration (MF)

- Pressure driven process where particulates (e.g. cells or cellular debris - waste) are retained on a basis of their physical size while small particles, small molecular weight species (product) & fluid/water pass through the membrane
- As fluid/water is removed the upstream is 'concentrated'
- <u>Diafiltration</u> in <u>MF</u> is used to '<u>wash'</u> <u>through more product</u> to increase the <u>yield</u>
- 0.1 to 1 micron in general

Ultrafiltration - UF

- Pressure driven process where solutes (e.g. proteins) (Product) are retained on a basis of their molecular size while very small molecular weight species (e.g. salts) & fluid/water pass through the membrane (waste)
- As fluid/water is removed the upstream is 'concentrated'
- <u>Diafiltration</u> in <u>UF</u> is used to <u>'exchange buffers'</u> to <u>prepare for</u> <u>chromatography to maximize yield</u>
- 0.01 to 0.1 micron
- 5-1000 kDa MWCO (molecular weight cutoff)

Tangential Flow Filtration – Microfiltration (MF)

- MF Objectives:
- 1. Transmit the product/protein through the membrane to a target yield (i.e. > 98% yield).
- 2. Retain unwanted waste material/particulate on the upstream side of the membrane.
- Note: Unwanted waste in downstream pool can be removed in successive steps... <u>lost</u> <u>product (retained), is lost yield and is non-</u> <u>recoverable.</u>

23

Tangential Flow Filtration – Ultrafiltration (UF)

- UF Objectives:
- 1. Retain the product on the upstream side to be recovered as yield (i.e. >98% yield).
- 2. Prepare (via concentration and diafiltration) the upstream product for chromatography (maximize the efficiency of subsequent chromatography step) or formulation (exchanges product into ideal buffer for formulation operation).
- Note: <u>lost product (passage or poor recovery)</u>, is <u>lost yield.</u>

2.4

Continuous Versus Discontinuous DF

Diafiltration Volumes	Continuous Percent removal (100% permeable)	Discontinuous 2X Percent removal (100% permeable)	
1	63	50	
2	86	75	
3	95	88	
4	98.2	94	
5	99.3	96.9	
6	99.7	98.4	
7	99.9	99.2	

TFF Downstream Examples

TFF Example 1 – Post-Protein A or Low pH VI

 TFF diafiltration to modify buffer and pH to optimize load conditions for Ion Exchange chromatography.

TFF Example 2 – Post-Cation Exchange

 TFF diafiltration to lower conductivity of MAb eluted in 300mM NaCl from Cation Exchange chromatography from 30-60 mS/cm to 5 mS/cm to optimize load conditions for Anion Exchange chromatography.

TFF Example 3 – Prep for Formulation

 TFF diafiltration to exchange to neutral buffer to enable formulation of final product.

20

Viral Clearance by Solvent/Detergent Inactivation

- Organic Solvent tri-(n-butyl) phosphate (TnBP)
- Detergent (Tween 80, Triton X-100)
- Generally Done following Protein-A capture
- Effective for lipid enveloped viruses
- Solvent enhances aggregation reaction between viral lipid coating and detergent

Viral Clearance by Low pH Viral Inactivation

- Lower pH ~3.5 to 4.0 depending on protein of interest
- Done following Protein-A capture
- Denature enveloped viruses
- Target protein should be resistant to denaturation from low pH for at least 2 hours.

31

Viral Clearance by Direct Flow Filtration

- Broad capability based on size exclusion
- Specific 'Robust' step
- Biological activity of product is maintained
- Viral components are removed
- Non-contaminating
- Easily validated

Single-Use Viral Filtration or Low pH Inactivation

- Single-Use Flow Path
- Automated
- Programmable
- Mobile
- Flexible
- Batch Reporting

Sterile Filtration - Bulk Fill **Process stream composition Primary Objectives** Typical Units/ ID measures Transmission of target molecule Removal of any bacterial contaminant Cell/mL; NTU; Cells viability **Purified Product** Cellula NTU Target Titre; mg/mL Molecule Host Cel Proteins Host Cell pg/mL DNA LRV of virus particles Viruses Bioburden CFU / 100mL Fluid L (e.g. media, buffer, water)

Bulk Fill System Single-Use

- Single-Use
- Automated
- Programmable
- Mobile
- Flexible
- Batch Reporting

27

Single-Use Applications

- Process safety, robustness and automation
 - Fully automated process control, monitoring and reliability in manufacture
 - Reproducible process performances, scalable solutions
- Single-use flow paths
 - Eliminates risk of batch or cross contamination
 - Eliminates cleaning requirements
 - Reduces validation time and costs
- Ease-of-use / Flexibility
 - Installation, operation, disassembly
 - Ready-to-use solutions, with reduced pre-use conditioning
- Process economics
 - Significant savings in capital, materials, labor & facility operating costs

Increases productivity and enhanced resource allocation

3.8

