Technology Transfer: A Development Perspective

Claudia Buser, Ph.D. Late Stage Process Development, BioR Framingham Sanofi June 18, 2015

Outline

- Process Development
 - QbD Approach
 - Small scale model development
- Tech transfer
 - Governance
 - Approach
 - Troubleshooting examples
 - Keys to success

Small Scale Model Development

- Scaleable to intended commercial scale
- Experience with similar processes
- Similar control (pH, DO, automation) to commercial scale

Small Scale Model Development

Scale Independent Parameters	Scale Dependent Parameters/Factors
Seed Train	-
Media formulation	Bioreactor pressure
Temp	Working volume
рН	Impeller agitation rate
pCO2	Overlay flow rate
DO	O ₂ sparge rate
Duration	O ₂ sparge pore size
N-1 Temp	Need for antifoam
BR Seeding density	Shear / mixing

Process Characterization

- Identify potential (p) CPPs & pKPPs
 - Well-controlled but critical, or difficult to control or detect
 - Prior knowledge
 - Ph I/II process
 - · Similar processes in-house
 - Published papers & industry experience
 - Theoretical understanding
 - Risk Assessment (FMEA)
 - Severity x Occurrence x Detectability
 Risk Priority Number (RPN)

Process Characterization • Experimental results used to refine critical parameter designations Design Space NOR Failure PAR PAR

Troubleshooting Examples

- pH control at scale not adequate based on on-line data
- Depth filter capacity lower than anticipated based on small-scale data
- At-scale recovery over chromatography steps less than anticipated
- Offline pO2 values offset at large scale (same DO setpoint)

Elements for Successful Technology Transfer

- Appropriate approach & strategy
- Robust process
- Definition of roles and responsibilities during transfer
 - "Engineering run guidelines" document
 - Clear delineation of decision-making process
- Attention to all process & logistical details
 - New and modified batch records & assoc. documents carefully reviewed by both development & mfg
 - Transfer of new process-specific protocols & training

Elements for Successful Technology Transfer

- On-floor presence of development representatives from cell culture & purification development during engineering /clinical runs
 - Daily run monitoring
 - Decision-making follow-up
 - Information flow "Daily Run Updates"
 - Coordination of extra sampling

Lessons Learned

- Gap / Risk analyses only as good as SME assessment
- Communication between multidisciplinary teams key
- Planned experiments can address known equipment differences
- Consider all possibilities when scale-up differences are observed
- Development people tend to underestimate likelihood of operational issues

Thank you!

Questions?

Claudia Buser
Claudia.buser@genzyme.com
office 508-271-3691

