# Keeping up with Single-Use

Geoffrey Hodge SVP Operations Unum Therapeutics 07 Oct 15



#### Outline

- Introduction / Overview
- Technology Survey
- Economics
- Quality
- Single-Use Facilities
- Summary



# Introduction



#### Disclaimer

- Content is the sole responsibility of the presenter
- Products and vendors listed are provided for reference and illustration and are not meant to constitute a complete list or endorsement





# **Biopharm Manufacturing Drivers**

- Time to market (clinic)
  - Facility start up time
  - Batch cycle time
  - Batch success rate
  - Batch yield
  - Regulatory approval

- Capital investment
  - Facility
  - Process equipment
  - Process utilities
  - Support equipment
- Cost of Goods Sold



#### **Drug Development Uncertainties**

**Process development:** Improvements may change process flow or yield dramatically

Market size & penetration: Market forecasts

imprecise, competition unpredictable

**Technical hurdles:** Process & tech transfer problems can impact need for capacity

Regulatory delays: Clinical hold, comparability,

non-approvable—all potential setbacks

**Manufacturing flexibility is critical** 



Overview of Single-Use



#### Disposables or Single-Use?

- Marketing (used vs. pre-owned car)
- Application difference
  - Disposables may be re-used (e.g. columns)
  - Single-use is used once and discarded



# **Industry History**

- Single-use components have been around as long as the biopharmaceutical industry:
  - Plastic petri dishes, T-flasks, roller bottles
  - Lab scale filter capsules and TFF devices
  - −IV bags & tube welders used in hospitals
- Surge in pilot and commercial use due to:
  - Increase in scale of well-established devices
  - Introduction of new devices
  - Improvements in films and extractables data
  - Economic and operational advantages



#### Growth of Single-Use

- Started in the lab
  - tissue culture flasks
  - syringe / capsule filters
- Biomanufacturing "staples"
  - capsule filters
  - bioprocess bags
- More functionality being introduced
  - larger scales
  - more types of unit operations
- Increasing industry acceptance & use



# **Enabling Technology**

- Bioprocess bags
- Cell culture systems
- Separations (TFF, filters, centrifuges, rotary drum)
  - Harvest
  - Virus removal / sterilization
  - Concentration / buffer exchange
- Purification (membrane adsorbers, pre-packed columns)
- Tubing welders / connectors / sealers
- Integrating stainless and disposables



# **Technology Survey**



# **BioProcess Bags**

**APPLICATIONS:** Delivery of pre-formulated cell culture media and buffers (or concentrates), or collection vessels for product, samples or waste

CAPACITY: <10 mL to 1800 L (larger custom)

**VENDORS**: Thermo (HyClone, ASI), Sartorius, GE, Charter

**NOTES**: Typically USP Class VI tested. Can be gamma irradiated. Additional material compatibility info available











#### Small-Scale Cell Culture

<u>APPLICATION</u>: Culture of mammalian, insect or plant cells in suspension

<u>CAPACITY</u>: ~10 mL - ~10 L / 25K cm<sup>2</sup>

**VENDORS**: Corning, Thermo, GE, Sartorius, Millipore

NOTES: TC flasks, roller bottles, spinners, shake flasks, hollow fibers, expanded T-flasks, rocking and stirred tank

bioreactors











# Mid to Large-Scale Cell Culture

<u>APPLICATION</u>: Culture of mammalian, insect or plant cells in suspension (recently microbial fermenters to 500 L)

**CAPACITY**: 50 L – 2000 L

<u>VENDORS:</u> GE, Sartorius, Thermo, Millipore, Pall

NOTES: Stirred tank design based on bioprocess bag assembly provided as complete, gamma-irradiated, closed system. Differences in drive systems, gas sparging, bag films.







#### Cell Harvest

<u>APPLICATION</u>: Separation of cells from growth medium during perfusion or end of batch culture

**CAPACITY**: Up to 120 L/hr

<u>VENDORS</u>: Pneumatic Scale/Carr (centrifuge), Spectrum and GE (hollow fiber), Cuno, Pall, Millipore, Sartorius (depth filtration)

**NOTES:** All product contact surfaces disposable









#### **Filtration**

<u>APPLICATION</u>: Clarification / sterilization of media, buffers, process intermediates, cell harvest, & particulate removal

<u>CAPACITY</u>: Syringe filters to 30" capsules generally available, (larger by custom order)

**VENDORS**: Millipore, Pall, Sartorius, Meissner

NOTES: Well established in industry. Trend toward larger capsules (fully disposable). Many available pre-sterilized and integrity tested. Base cost for capsule (most economical for expensive filters).



# Tangential Flow Filtration

<u>APPLICATION</u>: Perfusion, cell harvest, purification, concentration, and formulation / buffer exchange.

CAPACITY: Up to 13 m<sup>2</sup>

**VENDORS**: Hollow fiber: Spectrum, GE

Flat Sheet: Millipore, Pall, Sartorius, Tangenx NOTES: Recent introduction of ready-to-use









#### Virus Removal

<u>APPLICATION</u>: Mechanical reduction of viral load by nanofiltration

<u>CAPACITY</u>: 15 - 200 L/hr. (depending on pore size, filter medium & process stream)

**VENDORS**: Asahi-Kasei, Millipore, Pall, Sartorius,

<u>NOTES</u>: Filter elements expensive vs. larger pore size filters, so incremental cost of capsule less in proportion. Pall and Millipore have dead-end filtration capsules



### Chromatography

<u>APPLICATION</u>: Flow-through removal of contaminants, bindand-elute purification of small or dilute process streams

CAPACITY: 1 mL to 60 cm columns (85L)

<u>VENDORS</u>: Pall, Millipore, Sartorius, Natrix (membrane adsorbers), GE, Repligen (pre-packed columns), GE (skid)

<u>NOTES</u>: Membrane adsorbers are functionalized filter membranes. Operated like typical filters but capable of purification similar to ion-exchange chromatography.













# **Mixing Systems**

**APPLICATIONS**: Media and buffer formulation

CAPACITY: 10 L to 2500 L

**VENDORS**: GE, Thermo, Sartorius, Millipore, Pall

<u>COMMENTS</u>: Based on bioprocess bags. Mixing by piston, recirculation, rocking or impeller. Tank liners are a cheaper, open alternative for less critical applications.









## **Tubing Welders**

<u>APPLICATION</u>: Aseptic / sterile connection of tubing between bioprocess bags, sample collection or other systems by melting and reannealing tubing

CAPACITY: 1/4" to 3/4" OD tubing

**VENDORS**: Terumo, GE, Sartorius, Sebra

NOTES: Several devices have been validated by the vendor and/or biopharm manufacturers. Can be used on PVC and EVA (Sebra), or Tygon, C-flex and Pharmed

(Terumo, Wave) tubing.



#### **Connections**

<u>APPLICATION</u>: Connection / disconnection of tubing to bioprocess bags, sample collection or other systems

CAPACITY: <1/8" to 3/4" ID tubing

**VENDORS**: Colder, Pall, GE, Millipore

<u>NOTES</u>: Wide variety of non-sterile connectors (quick-connects, luer locks, sanitary connections, hose barb). Aseptic connectors (typically permanent) available in several designs. Steamable plastic connectors also available.





# Economics

#### Disadvantages of Single-Use

- Cost per batch of single-use components
- Greater dependence on outside vendors
- Increased logistics / material handling
- More material compatibility questions
- Scale limitations (esp. for commercial scale)



# Advantages of Single-Use

- Cleaning
- Sterilization
- Engineering
- Equipment lead time
- Utility requirements
- Validation
- Quality / Regulatory
- Space
- Labor



- Time to market
- Capital investment
- COGS
- Shortage of
  - capacity
- Flexibility





# Eliminating CIP / SIP

<u>Cleaning & Sterilization</u>: Single-use operation eliminates need for cleaning and sterilization

- What % of water is used for CIP?
- What % of mfg. labor is used for CIP / SIP?



#### **Engineering & Facilities Advantages**

<u>Engineering</u>: Functionality designed into the single-use component & elimination of CIP / SIP simplifies requirements for re-usable hardware

<u>Equipment Lead Time</u>: Simplified engineering typically leads to shorter equipment lead times

<u>Utility Requirements</u>: Elimination of CIP / SIP decreases demand for USP / WFI / clean steam generation and CIP skids



#### **Operational Advantages**

<u>Space</u>: No piping for CIP / SIP, bags collapsible, components removed after use reduces footprint during use & especially after use

<u>Labor</u>: Elimination of CIP / SIP effectively out-sources these activities. Decreased engineering complexity may decrease set up time.



#### **Quality Advantages**

<u>Validation</u>: Single-use eliminates need for cleaning validation, re-use / regeneration studies & bacteriostatis studies for storage solutions. Pre-sterilized components eliminate need for SIP sterilization and/or autoclave loads.

Quality / Regulatory: Single-use eliminates chance for cross contamination between batches & products. Eliminates possibility of resistant bioburden (e.g. "objectionable organisms")



#### **Economic Benefits**

<u>Capital Cost</u>: ~50% compared to stainless steel facility of same scale.

Operating Cost: Break-even to 30% operational savings (not counting depreciation), depending on scale, process and utilization

<u>Lower Fixed Cost</u>: Costs are shifted to variable, so plants can tolerate more idle time (ideal for clinical facilities with irregular schedules)



# Quality



# Regulatory Benefit of Single-Use

Recommendations for complying with CGMP Requirements (confd.)

- Use available technology and resources to facilitate product development, CGMP compliance, and lessen CGMP burden, i.e.:
  - disposable equipment and process aids
  - prepackaged water for injection (WFI) and sterilized containers
  - contract manufacturing and testing facilities



Joseph C. Famulare, Director Division of Manufacturing & Product Quality, Office of Compliance, CDER, FDA Presented at: Advisory Committee for Pharmaceutical Science, Manufacturing Subcommittee, 20-21 July 2004

#### What is Validation?

"Establishing documented evidence which provides a high degree of assurance that a specific process will consistently produce a product meeting its predetermined specifications and quality attributes."

Guideline on General Principles of Process Validation, FDA, 1987

Validation is a state achieved through qualifications and maintained through on-going quality systems







## **Qualifying Single-Use Systems**

- Single-use systems have two components
  - traditional hardware (pumps, sensors, automation)
  - disposable element (consumed/batch ≈raw material)
- Hardware should be designed and qualified using traditional procedures (ASTM2500)
- Single-use components
  - Perform process functions like equipment
    - "Non-critical" functions (storage, pre-filters, vent filters)
    - Process functions (separations)
  - Have vendor-dependent quality and batch variability like raw materials



#### **Qualifying Single-Use Systems**

(vs. traditional equipment)

- Design (DQ)
  - consider scale-up options
  - check temperature & pressure limits
  - determine material compatibility (extractables)
- Installation (IQ)
  - test interface with hardware / permanent equipment
- Operation (OQ) & Performance (PQ)
  - test installation procedures
  - test multiple vendor lots to establish variability
  - develop installation / functionality tests



ASTM2500 alternative—pull work forward & reduce testing

#### **Qualifying Single-Use Systems**

(vs. raw materials)

- Include in raw material controls program
  - test multiple lots for performance
  - establish specifications (γ-irr. ≠ sterile)
  - receive, test, release vs. specifications
- Perform vendor qualification
  - ability to supply, control of supply chain
  - manufacturing controls (cleanliness & quality)
  - change control & customer notification
  - testing and release methods
    - sterility integrity extractables



#### Qualifying Single-Use Systems\*

(extractables)

- · Collect vendor extractables data
- Check material compatibility in design phase
- Perform risk assessment
  - Material compatibility (solvent vs. polymer)
  - Contact time, temperature & surface area
  - Proximity to drug product
    - Upstream vs. downstream
    - Direct vs. indirect product contact
  - Toxicity of extractables (cytotoxicity)
- Perform product-specific testing as required



\*Applicable for o-rings, gaskets, diaphragms, flex hoses, UF membranes, chromatography resins, etc. in traditional processes

#### Impact of Single-Use Systems

(eliminating cleaning & sterilization)

- Design (DQ): Decreased engineering
  - no piping
  - less valving, instrumentation & automation (no CIP/SIP)
  - fewer utility tie-ins (CIP skid, steam)
- Installation (IQ): Reduced scope
  - no weld logs / weld inspection, pipe slope inspection
  - less valving, instrumentation & automation to verify
  - fewer utility verifications



#### Impact of Single-Use Systems

(eliminating cleaning & sterilization)

- Operation (OQ): Reduced testing
  - no spray ball mapping
  - no temp mapping
- Performance (PQ) & Process Validation: Reduced testing
  - no media holds (for sterile equipment)
  - sterile hold time studies eliminated



#### Impact of Single-Use Systems

(eliminating cleaning & sterilization)

- Cleaning Validation: Eliminated
  - development & qualification of cleaning procedures eliminated
  - qualification of CIP skids & controls eliminated
  - qualification of swabbing, recovery and analytical test methods eliminated
- · Cleaning-Related Studies: Eliminated
  - clean equipment hold time studies eliminated
  - resin / membrane reuse studies eliminated
- storage buffer bacteriostasis studies eliminated

#### Impact of Single-Use Systems

(on qualification / validation)

#### STAINLESS STEEL

- Design of CIP/SIP functions
- IQ/OQ of CIP/SIP systems
- Temp maps, media holds
- Cleaning validation
  - · swab studies, analytical
  - bacteriostasis studies
  - · reuse studies

#### **SINGLE-USE SYSTEMS**

- Extractables studies
- Vendor audits

QUALITY / VALIDATION EFFORT



# Single-Use Facilities







| Buy or Build Capacity? |                                                                                                               |                                                                                                             |
|------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                        | Buy                                                                                                           | Build                                                                                                       |
| Pro                    | <ul><li>No capital expense</li><li>Fast access to<br/>capacity</li><li>No cost between<br/>projects</li></ul> | <ul><li>Builds capability</li><li>Strategic asset</li><li>Control of projects</li><li>Flexibility</li></ul> |
| Con                    | <ul><li>Loss of control</li><li>Does not build internal capability</li></ul>                                  | <ul><li>Capital expense</li><li>Long lead time</li><li>Risk</li><li>Maintenance cost when idle</li></ul>    |

# New Possibilities with Single-Use

<u>Problem</u>: Buying CMO capacity is a fast, low capital option, but money spent does not build company assets <u>Ideal Solution</u>:

- Buy CMO capacity when risk / uncertainty is high, cash is low
- Quickly establish in-house capacity when risk is low, high product / pipeline demands certain





#### **Recent Trends**

<u>Continuous Manufacturing</u>: Perfusion cell culture, multi-column chromatography

<u>Closed Processing</u>: Closing process flow path should reduce or remove the requirement for classified manufacturing environment



#### Summary

- Single-use is well established, increasing trend and increasing scales
- Single-use can save batch labor and decrease scope of qualification / validation
- Single-use systems qualification combines
  - equipment qualification
  - raw material control systems
  - extractables studies (using risk matrix & vendor data)
- Single-use systems may be most beneficial for
  - capacity expansion (decreased space, validation & utilities)
  - multi-product facilities
    - · eliminated cleaning validation burden
    - · decreased turnaround time between campaigns

#### Summary

- Single-use enables a manufacturing platform with many benefits compared to standard technology
  - Extremely fast construction / capacity expansion time of 6-12 months
  - Significantly reduced capital cost
  - Decreased cost of operations
  - Easily reconfigured
  - Minimized operating space



