

Cost Impacts

Profit Margins for new and existing drugs will be squeezed

- Increasing Costs of Operations, Raw materials
- Competition between Innovator and Biosimilar products
- Drive for reduction in Healthcare costs
 - · Reimbursement pressures
 - · Consolidation of Health providers

Mandates for Bio manufacturing Operational Changes

Reduce Cost per unit mass of product produced

Future state of Biologics processing

* Data from Thomas Ryll, IBC 2009

Current/Future state of Cell Culture:

technology has evolved and high titer processes (>5 g/L) are norm

Current state of biologics process:

- Increased time in Production Reactor
- bottlenecks in processing at >5 g/L
- buffer volumes too large
- excessive column cycling
- column capacity exceeded
- filtration Areas & Processing time Increase

Presentation Overview

- Reshape Conventional Biologic Manufacturing processing steps to address
 - 1. Bottlenecks associated with increased Production time and Downstream operations constraints
 - 2. Process Space Compression to address increased titers
 - 3. Increase Throughput Capacity
 - 4. Cost Pressures
- · Review Technologies / Capabilities that address the above drivers
 - Production Reactor throughput
 - Downstream Capacity and Process Compression

Fed-Batch Mammalian Process

- Typical mammalian cell culture process including innoculum train, fed-batch production reactor
- Cell clarification via centrifugation, microfiltration and/or depth filtration
- Initial Capture Chromatography (Bind-Elute) for majority of Purification
- Secondary Chromatography Polishing step for product variant, aggregate removal
- Viral Filtration Robust Virus removal
- Ultrafiltration/Diafiltration Buffer exchange Formulation

Limitations of Current Purification Platform

Capacity: process volumes limit throughput for titers > 4-5 g/L

- Resin binding capacity
 - Large columns x multiple cycles = large volumes
- Protein A most concerning
 - 30- 40 g/L capacity
 - Polishing steps flow-through mode

~5 g/L at 20,000L Scale

- 1.6 m Protein A column (400L resin, 6 cycles, 45,000 L buffer)
- Protein A eluate volume ~ 7100 L
- Polishing Chrom eluate volume ~10,500L

Buffer Volume Constraints

Process Intermediate Volume Constraints

High Titer Processing: Strategies Capture

New Capture Resins that provide improved capacity and/or Productivity

Alternative non ProA Capture resins eg IEX, HyperCel

Factors that drive one technology over another:

- (1) COGs
- (2) Platformability,
- (3) Scalability,
- (4) Facility/Engr Retrofit,
- (5) Validation-complexity,

Alternative technologies (eg Precipitation, Expanded Bed)

High Capacity Process Alternative Capture Step

- Protein A improvements
 - New suppliers offering lower cost
 - New higher binding capacity resins
 - New modes of operation
- Protein A Replacement
 - B/E mode followed by one or two polishing F/T steps
 - ≥70 g/L dynamic binding capacity to

High Capacity Resins: Protein A

- For a high titer, shorter duration production bioreactor, the Protein A capture step with ~ 35-40 g/L loading capacity has been identified as a potential throughput bottleneck
 - Many column cycles
 - Large buffer requirements
 - Large intermediate process volumes
- Process modeling has shown that increasing capture column binding capacity to 60 g/L combined with buffer concentrates will alleviate potential bottleneck

Leverage higher capacity resins:

Bioreactor Train

Production Rxr

Harvest Clarification

High Capacity Capture

Polishing Step

Polishing Step

UF/DF

MAbSelect SuRe LX ٧S MabSelect SuRe

Ghose et al., Biotech Progress, 20(3), 2004

Maximizing Capacity on Protein A

MAbSuRe LX

New higher capacity version of resin

Dual flow rate operation

Stepping down flowrate during load optimizes for mass transport

DBC (10 % BT) of 60-70 g/L

Comparable performance with a ~ 50% increase in binding capacity

Product	Resin	Load g/L	Yield %	HCP ppm	Pr A ppm
•	CONTROL	35	> 95	500	2.1
Α	SuRe LX	55	> 95	488	3.2
	CONTROL 35	35	> 95	300	2.5
В	SuRe LX	55	> 95	690	4.6

Effect of Using Buffer Concentrates

10g/L Harvest Conditions

- Case 1 All chromatography buffers at 1x
- Case 2 All chromatography buffers at 5x

Case	Total # of Buffer Preps	Purification Cycle Time (days)	Upstream Cycle Time (1 train) (days)
1	50-60	τ	τ - 1.5 days

Without concentrates, Purification becomes the bottleneck

Summary

- Facility bottleneck for 1-5g/L Fed batch processes at large scale is production bioreactor (with three trains). Shift in Bottlenecks occur at Downstream as one approached 10g/L
- Integration of advances in N-1 Perfusion, High capacity resins, Buffer concentrates, and intermediate volume reduction allows for throughput increase by 2x as compared to no change in technology
 - Allow the avoidance of expanding facility Footprint
- As annual output and scale increase with titer increase, the relative importance of different cost categories are expected to change
 - Overall cost of goods/ gram product decreases by >70%

Acknowledgements

- N-1 Perfusion:
 - William Yang
 - Yao-Ming Huang
 - Alex Doane
 - Ellery Ward
- High Capacity Resins:
 - Sanchayita Ghose
 - Jennifer Zhang (Protein A)

- SPTFF:
 - Matt Westoby
 - Alex Brinkmann (SPTFF)
- Buffer Concentrates, Throughput
 - Chris Antoniou
 - Venkatesh Natarajan

