Introduction

• What are Retrofit Projects?
 – Upgrades / Renovations / Expansions in existing facilities
 – Concurrent with manufacturing operations or during shutdown periods.
Overview

• Key considerations for various lifecycle stages of retrofit projects
 - Design – Planning – Execution – Completion
• Illustrate with some “war stories” (audience participation encouraged!)
• Share some techniques & tools
• Q&A

Retrofit Goals

• Manufacturing:
 “When can I return to routine production?”

• Quality / Regulatory:
 “How can you prove to me there was no impact on operations?”
Design

Design Approach

• Involve key stakeholders as early in concept phase as possible:
 – Manufacturing, first and foremost
 – Facilities, QA, QC, Validation, Regulatory, HSE
• Identify likely impact areas
• Preliminary discussions of mitigation strategies
• Know what are considered to be deal-breakers
Physical Constraints

• Doorways / Ceiling heights / Floor loading
• Clearances for equipment to turn corners
• Operational accessibility
 – Is temporal segregation needed?
 – If so, added cleaning demands? Adequately supported?
 – Shipping/receiving schedules impacted?

Capacity Issues

• Utility supplies
 – Look beyond generation: Are storage & distribution sufficient for new loads & diversity?
 – Beware of cascading effects:
 • More clean steam requires more WFI requires more RO requires more incoming plant water
• Power supply
 – Adequate to maintain operations and support project demands?
 – Adequately isolated to protect ops?
 – Utility Power or Emergency Power or UPS?
Design Basis

• Question any assumptions of records reliability
 – All start-up / walk-down / commissioning changes complete and documented?
 – Beware if drawings updated on yearly basis; make sure to check red-lined versions
 – Walk down a sample of required documentation – then 100% of a class if significant errors found

• Is investigatory work required, warranted?

“Creative” Designs – Good or Bad?

• Multiple storage tanks vs. sub-loop systems
• Utilize gray space
 – GMP space savings vs. clean sampling capabilities
• Custom designed equipment
 – Challenge the custom aspects of the design during FAT

• “c”GMP / best practicable solution
• Consider CQV impacts of each approach
Acceptance Testing

• Do your FAT conditions match site conditions?
 – Quality, Volume and Flow Capacities: Steams, Purified Waters, Cooling, Air
 – Environment: Cleanliness, Temperature, Heat Removal, Humidity

• Will SAT requirements fit with ongoing manufacturing needs?
 – Beware of challenge testing impacting manufacturing operations

Risk Assessment

• For project – identify and mitigate most likely impacts to manufacturing

• Maybe more important - look back at prior assessments to determine if any safeguards will be compromised during retrofit
 – Are redundancies compromised?
Regulatory Impact

• Does retrofit work include facility modifications?

• Impact on regulatory filings? Consider:
 – Materials of construction
 – Personnel, material & product flow patterns
 – HVAC impacts (air changes, air flow patterns)

Planning
Calibration/PM Survey

• As-found data collection prior to start
• Don’t forget to take advantage of opportunity for Calibration/PM work
 – What operating units are coming due during retrofit? Verify that calibration/PM needs can be met
 – Look for opportunities to pull in events in retrofit area to avoid a second interruption
• Beware PM tasks overstressing systems already taxed by supporting both operations and retrofit
 – Plan ahead and staff up as required

Environmental Protection

• Verify gowning requirements for retrofit space
• Bag-in / bag-out for traversing active space
• Enhanced cleaning requirements
 – Contractor responsibilities
 – Routine cleaners responsibilities
 – Manufacturing responsibilities
• The regulatory/QA perspective: how to verify environment unaffected by retrofit work?
HVAC Issues

• If temporary barriers to be use, determine impact on air changes / air flow profiles
 – Will work necessitate segregation of supplies from returns? If so, how will you verify no impact to operation?
 • Consider enhanced sampling / monitoring

• Will project work require replacement of HEPAs at completion?
 – Certification and qualification requirements
 – Contingency spares

Resources

• Internal departmental support
 – QC: sampling & testing
 – Facilities / Metrology / Cleaning Staff
 – Training for trades and contingent staff
 – QA and Validation: commissioning and qualification

• Contractor support: lead time
 – Vendor Qualification → RFQ → PO Approval → Training
 – Training on all daily permitting reporting requirements

• Supplies
 – Gowning
 – Cleaning
 – Production consumables
Return to Service Plan

• Not just a matter of completing the mechanical work
• Proactively plan:
 – Preparation of TOPs concurrent with construction
 – Handoffs: Construction -> Commissioning -> Validation -> Manufacturing – for each system
 – Release of utilities to support CQV schedule
 – Ramp up Commissioning while Construction ramps down
 – Technical Support of CQV activities:
 • Training of Facilities / Maint / Mfg on new equipment
 • Keep Trades available through commissioning: things break, flaws discovered, adjustments are required

Expect the Unexpected

• Use cross-functional team to populate a Risk Register identifying ‘pinch points’ – factors with high potential impact to the critical path
 – Manufacturing doesn’t finish on time
 – Equipment is not available or found in unexpected condition – deviation investigation, out of calibration, etc.
 – Surprises in the walls
 – State and local inspections issues
• Feed results into Risk Analysis for mitigation
Execution

Protecting Operations – The Obvious

• Performance
 – What does “Work Clean” mean?

• Logistics
 – Signage
 – Contractor parking, trailers, lavatories, access to workspace
 – Are normal flow paths maintainable? Temporal segregation? Associated cleaning requirements?

• Manpower
 – temporary support if insufficient personnel for both retrofit and routine operations
The Not-So-Obvious

• Enhanced monitoring/sampling requirements
 – EM sampling and QC lab capacity

• Vibration / Noise
 – Construction (trenching, etc.) / Equipment movement

• Electrical Isolation

• Utility support – both GMP and non-GMP
 – Which routine operations in those areas will be affected?
 – Will temporary procedures or supplies be needed?
 – Cascading release: can WFI or CS start qualification while RO is conditionally released or only after full incubation period? When can each utility be used for manufacturing?

Keeping a Manufacturing Focus

• How will project plan be communicated?
 – Manufacturing approval of / access to an up-to-date detailed schedule

• Orient thinking along the lines of how to minimize / eliminate manufacturing impact
 – Absolutely critical to have 24/7 access to decision makers from Manufacturing / QA / Regulatory

• Develop a methodology for how changes to the project plan will be communicated
Useful Tool – Work Request Form

• Thursday AM look-ahead for following week.
 – Work breakdown by area & major tasks
 – Utility impacts
 – Special requirements (hot work, etc.)
 – Contractors involved with contact info
• Friday noon sign-off by PM, QA, Mfg
 – No work without signatures

Bumps in the Road

• Non-routine use of systems creating upsets
 – Excessive flow, increased/decreased velocities, spikes
• Biofilm flaking from drying out
• Opportunity for visual inspection may have unintended consequences
 – What if you find rouge?
• Many shutdowns over December holidays – beware of idle systems freezing
• Floor repair / interference with operations
• Damage from Project Activities
Completion

Defining “Done” – Completion Requirements

Greenfield Projects:
- Mechanical Work
- Validation Reports

Greenfield Projects: TOPs
- As-Built Drawings

Retrofit Projects - all the above, and as an added bonus:
- Action Notices
- Change Controls

Retrofit Projects - Work Orders
- Regulatory Filings
Returning to Service

• Quality requirements (Waters, CS, EM, HEPA)
 – Sampling / Testing / Release
 – Contingency for failed samples

• How will documentation changes be handled if manufacturing SOPs are affected?
 – How will training be accomplished for the return to service? Make sure to include this in the plan.
Key Takeaways

1. Access to the team of decision makers
2. Resourcing for added activities
 - PM / Metrology
 - Cleaning
 - Monitoring/Sampling
 - Commissioning/Qualification/Validation (supported by mfg / eng / quality)
3. Detailed plan for return to service
 - Agree contingency plans in advance
Questions?

- Please feel invited to contact me

Rick Kotosky, P.E.
Integrated Process Technologies, Inc.
rkotosky@intprotech.com