

Serving All of New England

Introduction to Water Purification What's all the fuss about, anyway?

Brian Hagopian, CPIP Chemist and President Clear Water Consulting, Inc brian@clear-water-consulting.com (978) 888-3082

Answer 4 Simple Questions

- **1.What is the incoming water quality?**
- 2.What is the water quality that we need?
- 3.What treatment processes are available and what does each process do?
- 4. How do I get the water from the point where it is picking up contamination along the way)?

Serving All of New England

Connecting

produced to the points where it is used (without

Question #1: What is our starting water quality?

What public information is available from the local municipality?

Contaminant Detected	Unit	MCL	MCLG	Level Detected	Range of Detection	Major Sources	Violation
Regulated Contamina	nts						
Nitrate	ppm	10	10	0.34	N/A	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion from natural deposits.	NO
Flouride *(see below)				1.17	0.88 to 1.17	Water additive that promotes strong teeth.	NO
* State (MCL)	ppm	2	none				
* EPA (MCL)	ppm	4	none				
Sodium	ppm	none	none	34.3	N/A	Erosion of natural deposits; road salt, and water treatment chemicals.	NO
Chlorite	ppm	1.0	0.8	0.50	0.21 to 0.50	By-product of drinking water disinfection.	NO
Turbity (see note)	NTU	1.0	TT=100%	0.17	0.06 to 0.17	Soil runoff.	NO
TT = Lowest percentage Note: Turbidity is a me the effectiveness of our	asure	of the c	loudiness o		er. We moni	itor it because it is a good indi	cator of
Disinfectant residual	ppm	(MRDL) 4	(MRDLG) 4	.97	0.42 to .97	By-product of drinking water disinfection.	NO
Perchlorate	ppb	2.0	none	0.33	N/A	Rocket propellants, fireworks, munitions, flares, blasting agents. Aged water treatment disinfection chemicals	NO

Contaminant Detected	Unit	MCL	MCLG	Level Detected	Range of Detection	Major Sources	Violation
Regulated Contamina	nts						
Nitrate	ppm	10	10	0.34	N/A	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion from natural deposits.	NO
Flouride *(see below)				1.17	0.88 to 1.17	Water additive that promotes strong teeth.	NO
* State (MCL)	ppm	2	none				
* EPA (MCL)	ppm	4	none				
Sodium	ppm	none	none	34.3	N/A	Erosion of natural deposits; road salt, and water treatment chemicals.	NO
Chlorite	ppm	1.0	0.8	0.50	0.21 to 0.50	By-product of drinking water disinfection.	NO
Turbity (see note)	NTU	1.0	TT=100%	0.17	0.06 to 0.17	Soil runoff.	NO
TT = Lowest percentage Note: Turbidity is a mea the effectiveness of our	asure	of the cl	oudiness o		er. We moni	itor it because it is a good indi	cator of
Disinfectant residual	ppm	(MRDL) 4	(MRDLG) 4	.97	0.42 to .97	By-product of drinking water disinfection.	NO
Perchlorate	ppb	2.0	none	0.33	N/A	Rocket propellants, fireworks, munitions, flares, blasting agents. Aged water treatment disinfection chemicals	NO

Serving All of New England

Connecting

What public information is available from the local municipality?

Contaminant Detected	Unit	MCL	MCLG	Level Detected	Range of Detection	Major Sources	Violation		
Volatile Organic Contaminants									
(TTHM)	ppb	80	0	(50)	0.5 to 50.0	By-product of drinking water chlorination.	NO		
[Total Trihalomethane	es]			(Highe	est Runing	Annual Average)			
Disinfection By-Produ	ict Co	ontamin	ants						
(HAA)	ppb	60	0	(20.7)	0 to 20.7	By-product of drinking water chlorination.	NO		
[Halo-acetic Acids]	cids] (Highest Runing Annual Average)								
Unregulated Contami	nants	5							
MTBE	ppb	none	none	N/D	N/D<0.05	Gasoline Additive.	NO		
Chloroform	ppb	none	none	15.1	3.9 to 15.1	By-product of drinking water chlorination.	NO		
Bromodichloromethane	ppb	none	none	7.3	2.2 to 7.3	By-product of drinking water chlorination.	NO		
Chlorodibromomethane	ppb	none	none	2.5	N/D<0.6 to 2.5	By-product of drinking water chlorination.	NO		
Sulfate	ppm	none	none	5.0	5.0	Mineral and nutrient	NO		

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of un-regulated contaminant monitoring is to assist EPA in determining their occurrence in drinking water and whether future regulation is warranted.

Serving All of New England

Connecting

What public information is available from the local municipality?

Contaminant Detected	Unit	MCL	MCLG	Level Detected	Range of Detection	Major Sources	Violation			
Radionuclides	Radionuclides									
Gross Alpha	pCi/l	15	0	0.5 (+-1.1)	N/A	Erosion of natural deposits	NO			
Radium 228	pCi/l	5	0	0.1 (+-0.6)	N/A	Erosion of natural deposits	NO			
Contaminant	Unit	MCL	MCLG	Level Detected	Range of Detection	Major Sources	Violation			
Lead	ppb	15	0	.001	0 of 50	Corrosion of household plumbing systems. Erosion of natural deposits.	NO			
Copper	ppm	1.3	1.3	0.04	0 of 50	Corrosion of household plumbing systems. Erosion of natural deposits; Leaching from wood preservatives.	NO			

Finished water pH ranged from 7.5 to 8.3

Connecting

What we really need to know

- Barium, MG/L
- Boron, MG/L
- Calcium, MG/L

- Sodium, MG/L

- Chloride, MG/L
- Fluoride, MG/L
- Sulfate, MG/L

Serving All of New England

Connecting

Magnesium, MG/L

Potassium, MG/L

Silica as SiO2, MG/L

Strontium, MG/L

Ammonia, MG/L

Bicarbonate, MG/L

Carbonate, MG/L

Nitrate as N, MG/L

Silt Density Index Organics Content (as TOC, MG/L)

Let's understand what's in the water to start with

Classify the various contaminants

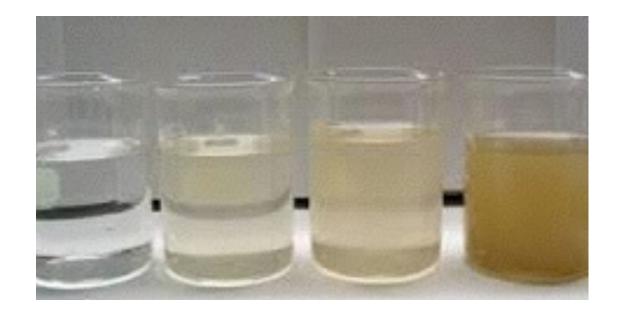
- Particles or Suspended Solids
- Dissolved Solids
 - Ionized
 - Non-ionized
- Colloidal Materials
- Dissolved Gases
- Bacteria and other living organisms

All Contaminants have the potential to introduce variability !!

Serving All of New England

Connecting

Pharmaceutical


Particles or Suspended Solids

- Materials that do not dissolve in water
- **Can be any shape**
- Moving water holds more particles
- by themselves
- **Smaller particles may never settle**

Connecting

Serving All of New England

Mostly considered as hard, spherical particles Larger and more dense particles will settle out

Dissolved solids, lonized

- Materials that dissolve in water
- Form free floating ions in solution
 - Adds positive and negative charges to a solution
 - Solution remains electrically neutral
- The ionized solids content changes how much electricity the water can conduct
- Direct relationship between the abundance of ions and the conductivity of the water

Serving All of New England

Connecting

Dissolved solids, Non-Ionized

Materials that dissolve in water

Do not form free floating ions in solution

No charge is added to the solution

conductivity

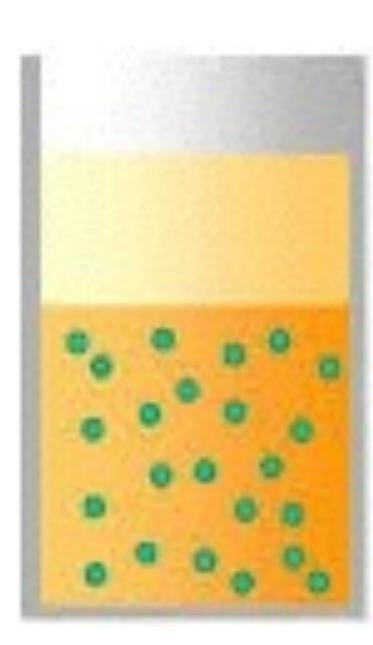
Presence is more difficult to detect

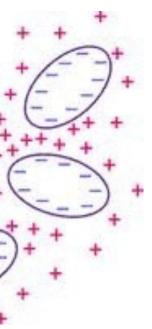
Serving All of New England

Connecting

- No change in the conductivity of the solution
- **Cannot measure abundance by measuring**

Colloidal Materials or Suspensions


Contain carbon Slightly negative charge Too small to settle by themselves Undetectable change in the conductivity Measure abundance by silt density index **Can quickly clog purification processes**



Connecting

- Large in molecular size (10,000-5,000,000 MW)
- Somewhere between suspended and dissolved

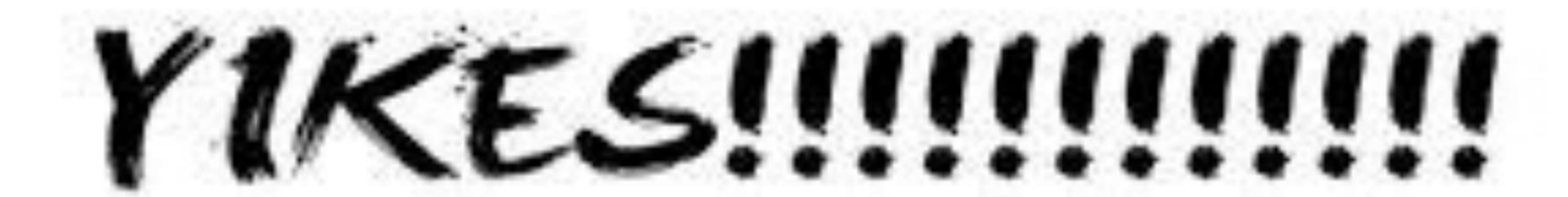
 - Held in solution by size and charge repulsion

Dissolved Gases

- Nitrogen, oxygen, carbon dioxide, ammonia
 - Not removed by most purification processes
 - More dissolved gases in solution at lower temperatures (opposite of dissolved solids)
 - Least understood and least studied contaminant
 - **Carbon dioxide is troublesome because it adds conductivity when it dissolves into solution**
 - Ammonia can be troublesome to some purification processes in waters treated with chloramine
 - Measured in clean steam as non condensible gases

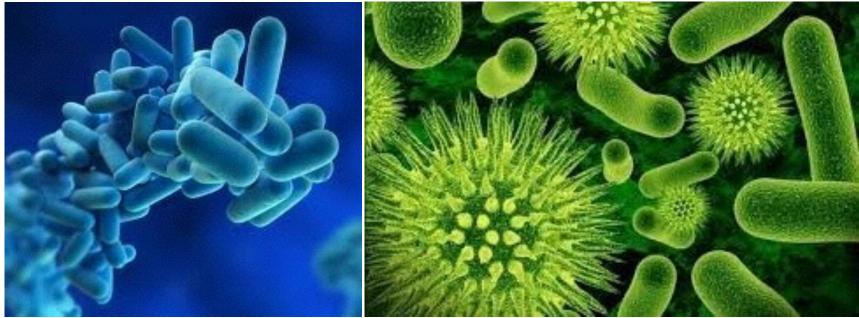
Serving All of New England

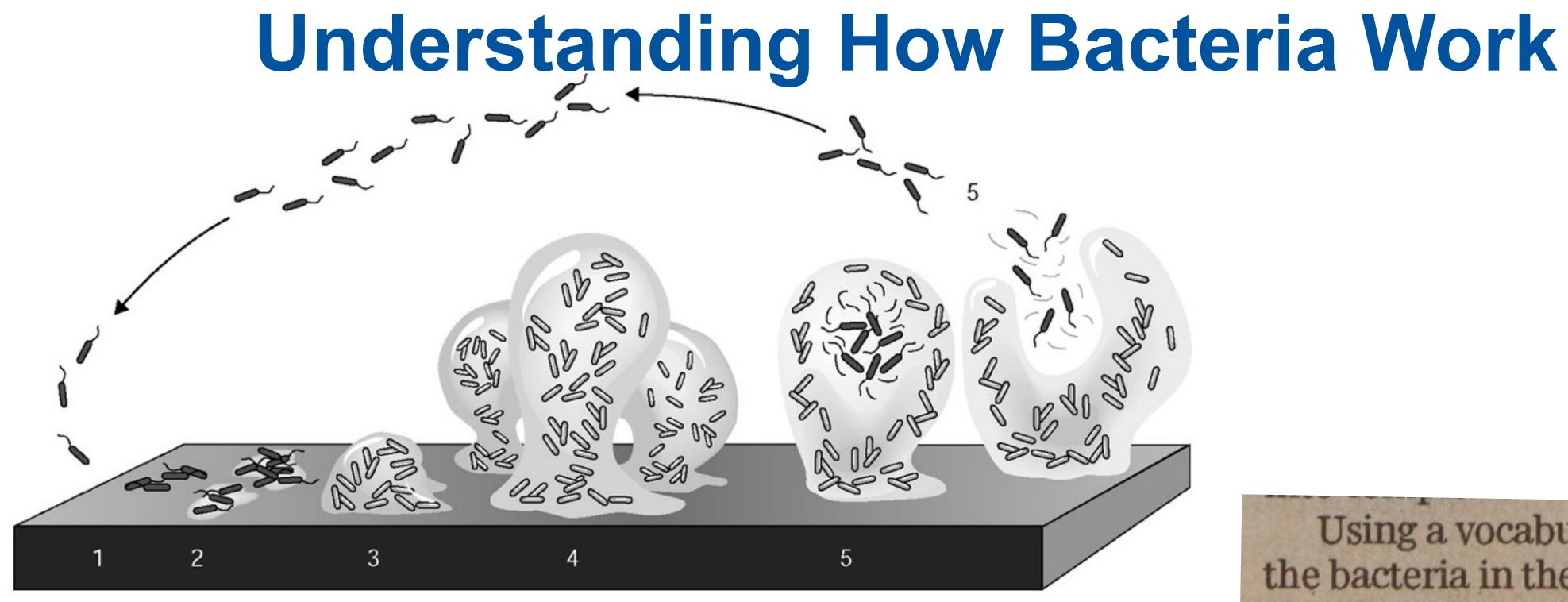
Connecting


Knowledge

ispeboston.org

Bacteria and other living organisms


Not uniformly distributed in a water system **Exist in equilibrium with their environment** More food = more bacteria Less than 1% is free floating (detectable) **Bacteria competes for nutrients with cells we're growing Bacteria can replicate every 30 minutes** Mammalian cells replicate every 24 hours That's a ratio of 2800 trillion to 1



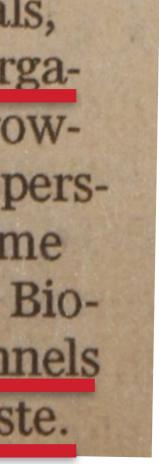
Serving All of New England

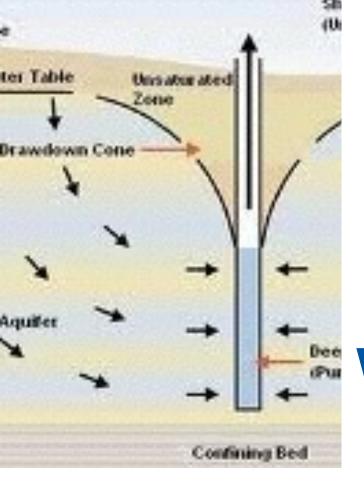
Connecting

Attach **Biofilm Development and Growth Send out scouts** Colonize

Not uniformly distributed like other contaminants

Regular sterilizations or nutrient deprivation for best control



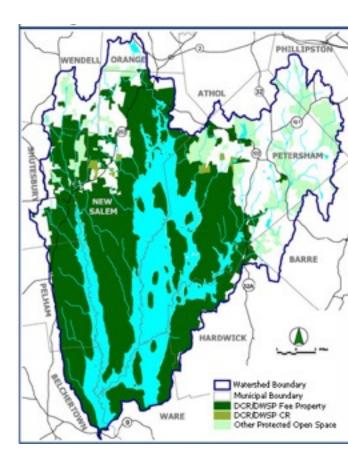

Serving All of New England

Connecting

Using a vocabulary of chemicals, the bacteria in the biofilms self-organize and divide up tasks, some growing and secreting slime, some dispersing to colonize new areas, and some hibernating until they're needed. Biofilm structures even contain channels to take in nutrients and expel waste.

Boston Globe, June 29, 2016

How do it properties vary? Well Water


Low Suspended Solids High Dissolved Salts Low Colloidal Content **Some Dissolved Gases**

Serving All of New England

Connecting

Where does our water come from? **Surface Water**

High Suspended Solids Low Dissolved Salts **High Colloidal Content High Dissolved Gases**

Question #2 What is the end use of the water ??

Connecting

What water quality do we really need ? It depends !

Where are we in the product's life cycle ?

Connecting

Pharmaceutical

Serving All of New England

Drug Discovery

Full Scale Manufacturing

Knowledge

ispeboston.org 18

Labs use CLSI/NCCLS or ASTM specifications for purity

PARAMETER	CLS	SI/NCC	LS		ASTM			
	TYPE 1	TYPE 2	TYPE 3	TYPE 1	TYPE 2	TYPE 3	TYPE 4	
Conductivity (max)	<0.1	<0.2	<0.5	0.056	1.0	0.25	5.0	
Resistivity (min)	>10.0	>2.0	>1.0	18.0	1.0	4.0	0.2	
рН							5.8-8.0	
Silica (ppb)	<500	<100	<1000	3	3	500		
Sodium (ppb)				1	5	10	50	
Chlorides				1	5	10	50	
Total Organic Carbon (ppb)				100	50	200		
Bacteria (cfu/ml)	<10	10		Separate specification, only where bacteria control is required Type 1 : 10/1,000 ml Type 2 : 100/1,000 ml Type 3 : 10,000/1,000 ml				

Dialysis has their own requirements

CHEMICAL CONTAMINANTS & MAXIMUM ALLOWED (MG/L

Aluminum	0.01
Antimony	0.006
Arsenic	0.005
Barium	0.10
Beryllium	0.0004
Cadmium	0.001
Calcium	2 (0.1mEQ/L
Chloramines	0.10
Chromium	0.014
Copper	0.10
Fluoride	0.20
Free Chlorine	0.50
BACTERIA	

Water used for dialysate \rightarrow (RD52,4.1.2)

Dialysate $\rightarrow \rightarrow$ (RD52, 4.3.2.1)

Connecting

Pharmaceutical

Serving All of New England

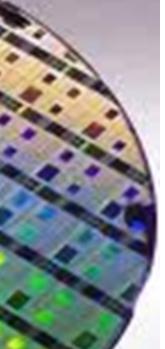
Lead 0.005 Magnesium 4 (0.3mEQ/L) 0.0002 Mercury Nitrate 2.0 8 (0.2 mEq/L) Potassium Selenium 0.09 0.005 Silver Sodium 70 (3.0 mEq/L) Sulfate 100.0 Thallium 0.002 0.10 Zinc

MAXIMUM ALLOWED

<200 CFU/ml Endotoxin level <2 EU/ml

<200CFU/ml Endotoxin level <2 EU/ml

L)


Knowledge

ispeboston.org | 20

Microelectronics requirements are unbelievable ! Page 1 of 3

PARAMETER	ATTAINABLE	ACCEPTABLE	ALERT	CRITICAL
Resistivity	18.2	18.2	17.9	17.5
TOC (online, ppb)	<1	<2	5	10
THM (ppb)	<2	<5		
Particles by laser 0.05 to 0.1 micron 0.1 to 0.2 micron 0.2-0.3 micron 0.3-0.5 micron >0.5 micron	<100/1000 ml <50/1000 ml <20/1000 ml <10/1000 ml	<500/1000 ml <300/1000 ml <50/1000 ml <20/1000 ml <4/1000 ml		
Bacteria (cfu/1000 ml)	<1	<6	25	>25
Silica (total, ppb)	<0.5	<3	>5	>10

PARAMETER	ATTAINABLE	ACCEPTABLE	ALERT	CRITICAL
Phosphate (ppb)	<0.02	<0.1	>0.01	>0.5
Silicate (ppb)	<0.05	0.1	<0.02	>0.5
Sodium (ppb)	<0.01	0.05	>0.02	>0.5
Potassium (ppb)	<0.02	<0.1	>0.02	>0.5
Ammonium (ppb)	<0.06	0.1	<0.02	>0.5
Calcium (ppb)	<0.02	<0.1	>0.01	>0.2
Magnesium (ppb)	<0.02	<0.1	<0.01	>0.2
Fluoride (ppb)	<0.1	<0.1	>0.02	>0.5
Chloride (ppb)	<0.02	0.1	<0.02	>0.5
Bromide (ppb)	<0.02	<0.1	>0.01	>0.5
Nitrate (ppb)	<0.02	<0.1	<0.01	>0.5

METAL ION C	CONTAMINANTS,	ALL ARE MEASU	RED IN PARTS PI	ER TRILLION
Aluminum (ppt)*	7	50	>0.0	200
Barium (ppt)*	2	10	>50	100
Boron (ppt)*	300	<2000		
Chromium (ppt)*	8	30	>30	50
Copper (ppt)*	5	50	>50	>200
Iron (ppt)*	10	100	200	>200
Lithium (ppt)*	4	30	100	>100
Magnesium (ppt)*	2	20	100	>200
Manganese (ppt)*	4	30	>30	100
Nickel (ppt)*	5	50	>50	100
Sodium (ppt)*	10	60	>200	>500
Strontium (ppt)*	2	10	>10	>10
Zinc (ppt)*	8	60	>50	>100

Serving All of New England

Page 3 of 3

Pharmaceutical Water Quality

PARAMETER	USP PURIFIED	USP WFI
Total Organic Carbon (ppb)	500	500
Conductivity	<1.3 @ 25°C	<1.3@25°C
Bacteria	None given, but recommended to be 100/ml	None given, but recommended to be 10/100 ml
Endotoxins		<0.25 EU/ml

Hey, Why Is Injectable Grade Water **Allowed To Have Bacteria ??**

Connecting

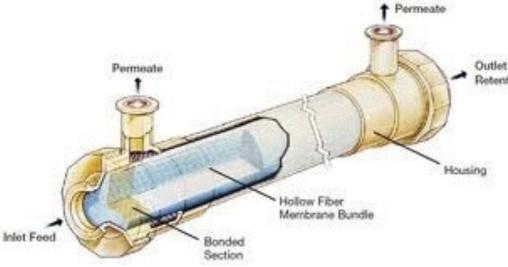
Question #3 What water purification processes are available? What does each one actually DO?

Connecting


Pharmaceutical

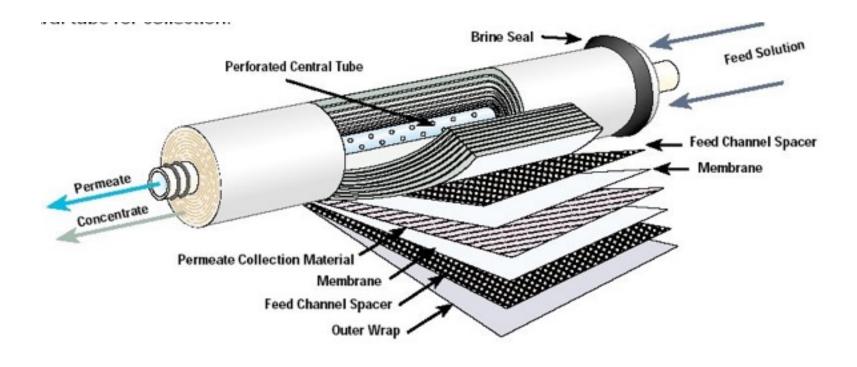
Serving All of New England

Suspended Solids Removal


Particle filters remove contaminants based on their size

Nominally rated filters 80-95% removal efficiency Sizes down to ~ 1 micron

Most are absolute rated filters 95-99.9999% removal efficiency Sterile filtration 0.1 to 0.8 micron size



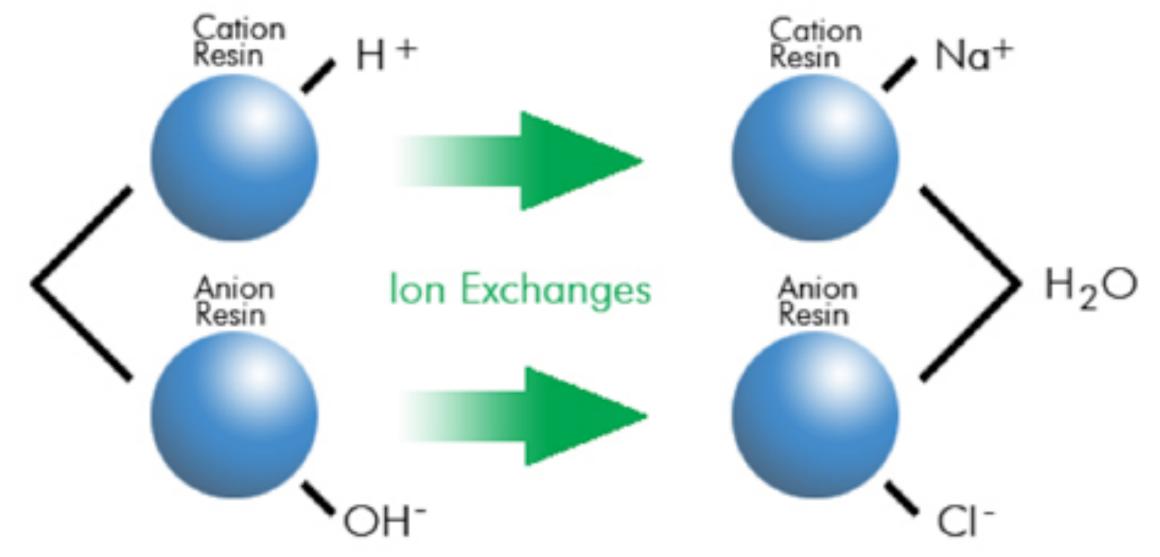
^{Nutlet} Ultrafiltration ~99% removal efficiency 5,000-500,000 MWCO

Serving All of New England

Connecting

Reverse Osmosis 90-99%% removal efficiency 200-500 MWCO

Ion exchange removes contaminants based on their electric charge in solution



NaCl

Connecting

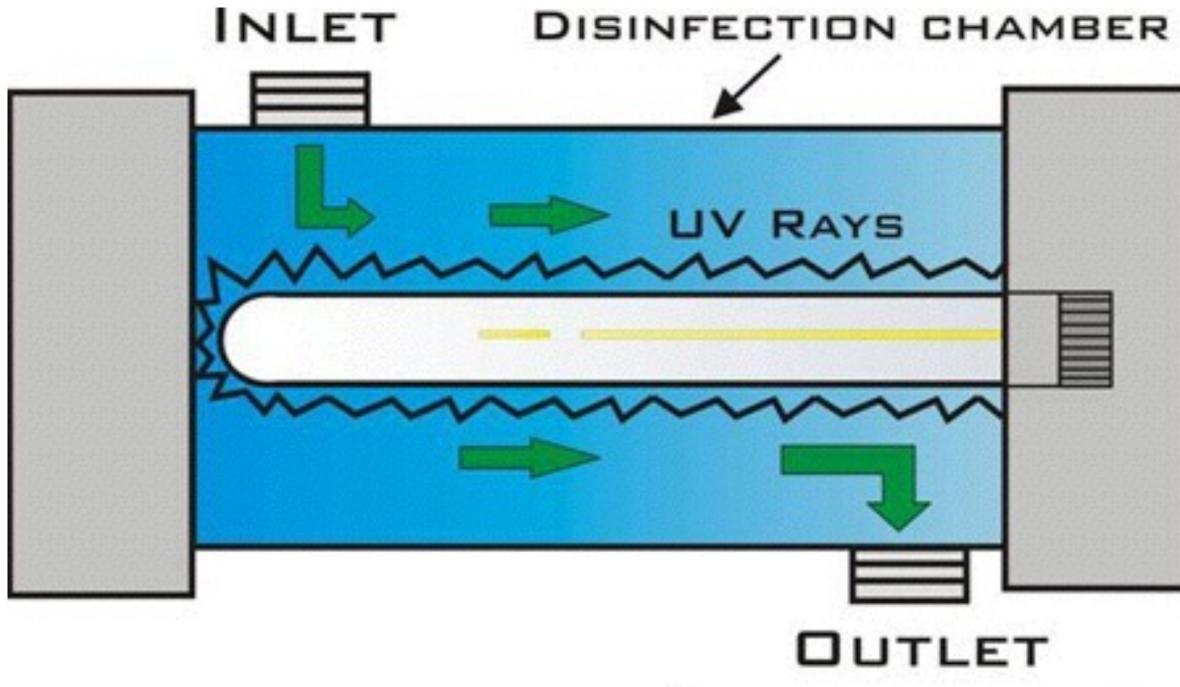
Serving All of New England

Carbon filters remove small (below 1,000 MW) non polar molecules

Serving All of New England

Connecting

Pharmaceutical


Remove disinfectants from drinking water

Protects chlorine sensitive reverse osmosis membranes

Ultraviolet units come in two basic flavors

(DISINFECTED WATER)

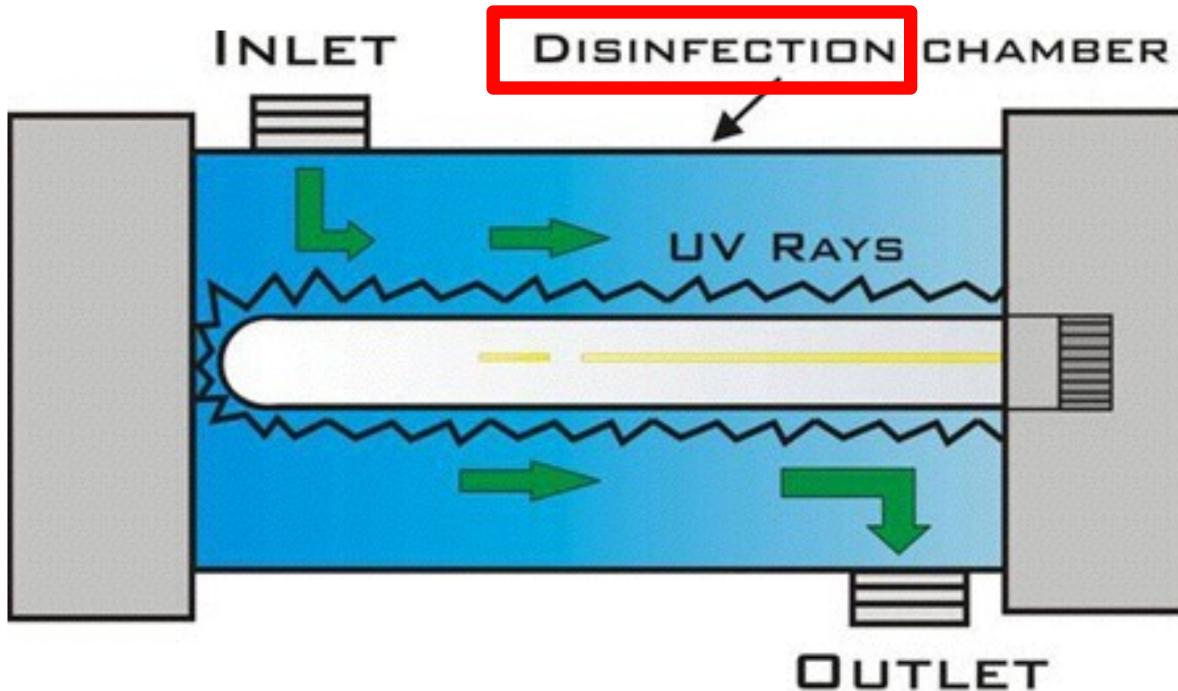
Serving All of New England

Connecting

Pharmaceutical

Single wavelength units (254 nm) for bacterial control

Dual wavelength units (185 & 254 nm) for organics (TOC) and bacteria control


Dual wavelength units (185 & 254 nm) increase the conductivity of the water, so location is extremely important

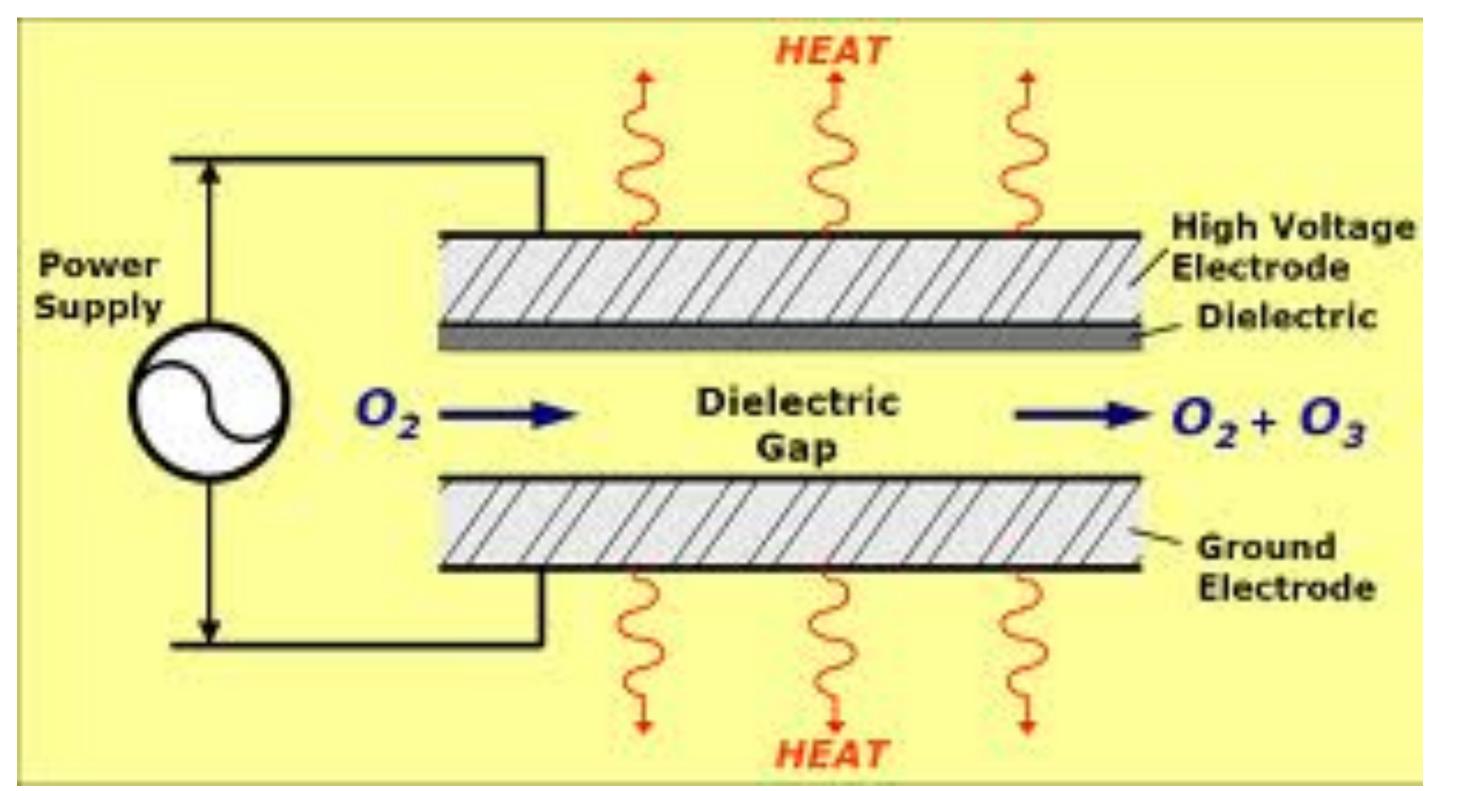
Knowledge

ispeboston.org 29

(DISINFECTED WATER)

These words are used almost interchangeably by equipment manufacturers But these words mean very different things

Connecting


Pharmaceutical

Serving All of New England

Commonly Misused Words

Sanitize **10³ reduction** Disinfect **10⁵ reduction Sterilize 10⁶ reduction**

Ozone Generators are becoming more popular

Mis-application and misuse of ozone technology has led to compatibility and other under and over dosing problems, making many users reluctant

Serving All of New England

Connecting

Oxidizes organics Kills bacteria Consumes biofilm Ozone is NOT considered an added substance

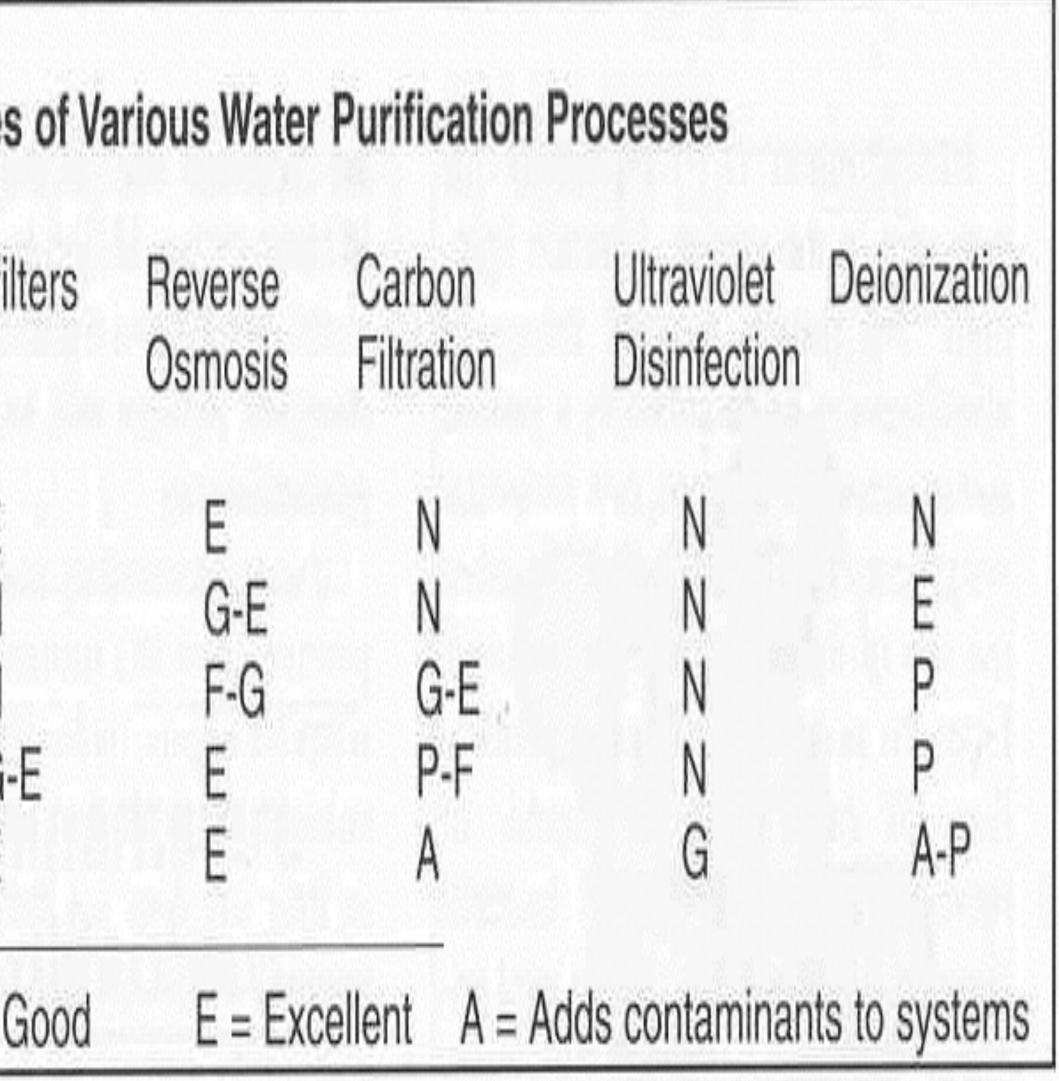
Distillation is the only water treatment process that removes the water from the contaminants

Connecting

Serving All of New England

Considered the gold standard for producing Water-For-Injection (WFI) grade water

Dissolved gases and some chemicals can carry over into distillate (product water)



Summary of Unit Operations

	Table I	- Removal Cap	avintica
	Coarse Particle Filters	Absolute Membrane Filters	Ultrafil
Particles	F	G-E	E
Dissolved lons	Ν	Ν	N
Small Organics	Ν	Ν	Ν
Colloids	Ν	F-P	G-
Bacteria	Ρ	E	E
N = None P :	= Poor	F = Fair	G = (
ter		Connecting	Pharma

Serving All of New England

ISPE_®

Brian Hagopian, CPIP Clear Water Consulting, Inc. Chelmsford, **MA** brian@clear-water-consulting.com (978) 888-3082

Serving All of New England

Connecting

Pharmaceutical

