ADAPTABLE ATMP FACILITIES: DESIGN FOR AN UNKNOWN FUTURE

Howard Sneider
ISPE BAC Product Show
September 18, 2019
Gillette Stadium
Foxborough, MA
NEVER GIVE UP ON WHAT YOU REALLY WANT TO DO. THE PERSON WITH BIG DREAMS IS MORE POWERFUL THAN THE ONE WITH ALL THE FACTS.

/ H. JACKSON BROWN, JR.
Agenda
Brief overview of topics

- Today’s ATMPs
- Current Needs
- State of the Art Facilities
- Tomorrow’s ATMPs
- Future Facilities
- Bridging the Gap.
Today’s ATMP
Types of ATMP’s

> ATMPs can be classified into three main types:

 – gene therapy (GT) medicines: active substance which contains or consists of a recombinant nucleic acid

 – somatic-cell therapy (sCT) medicines: contains or consists of cells or tissues that have been subject to substantial manipulation

 – tissue-engineered product (TEP) medicines: contains or consists of engineered cells or tissues

> In addition, some ATMPs may contain one or more medical devices as an integral part of the medicine, which are referred to as combined ATMPs.

> Except for naked nucleic acid and similar treatments, ATMP’s cannot be sterile filtered.
Today’s ATMP

GT Examples

> gene therapy (GT) medicines: active substance which contains or consists of a recombinant nucleic acid.

> Gene based (DNA) ATMPs may treat inherited diseases, cancer, and tissue regeneration.

> Glybera – by UniQure, in-vivo gene therapy example
 - Treatment of lipoprotein lipase deficiency
 - Replication-deficient adeno-associated viral vector designed to deliver and express the human LPL gene variant LPLS447X

> Strimvelis – by GSK, ex-vivo gene therapy example
 - CD34+ cells transduced with retroviral vector that encodes for the human ADA cDNA sequence
 - Treatment of patients with severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID) a.k.a, “Bubble-boy disease.”
 - Only 5 sales since 2016.
Today’s ATMP

GT Examples

Glybera®
3 x 10^{12} genome copies/ml solution for injection
alipogene tiparvovec

Intramuscular use.
Store vial horizon tal frozen at -20°C to -10°C.
Keep the veículo in the original carton in order to PROTECT from light.
Read the package insert before use.
Today’s ATMP

GT Examples

> gene therapy (GT) medicines: active substance which contains or consists of a recombinant nucleic acid.

> Gene based (DNA) ATMPs may treat inherited diseases, cancer, and tissue regeneration.

> Glybera – by UniQure, in-vivo gene therapy example

 – Treatment of lipoprotein lipase deficiency

 – Replication-deficient adeno-associated viral vector designed to deliver and express the human LPL gene variant LPLS447X

> Strimvelis – by GSK, ex-vivo gene therapy example

 – CD34+ cells transduced with retroviral vector that encodes for the human ADA cDNA sequence

 – Treatment of patients with severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID) a.k.a, “Bubble-boy disease.”

 – Only 5 sales since 2016.

Gene therapy (GT) medicines: active substance which contains or consists of a recombinant nucleic acid.

Gene based (DNA) ATMPs may treat inherited diseases, cancer, and tissue regeneration.

Glybera – by UniQure, in-vivo gene therapy example

- Treatment of lipoprotein lipase deficiency
- Replication-deficient adeno-associated viral vector designed to deliver and express the human LPL gene variant LPLS447X

Strimvelis – by GSK, ex-vivo gene therapy example

- CD34+ cells transduced with retroviral vector that encodes for the human ADA cDNA sequence
- Treatment of patients with severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID) a.k.a, “Bubble-boy disease.”
- Only 5 sales since 2016.
Today’s ATMP
GT Examples
Today’s ATMP
sCT Example

> somatic-cell therapy (sCT) medicines: contains or consists of cells or tissues that have been subject to substantial manipulation.

> Cell Based ATMPs may treat cartilage defects, tissue replacement, immunotherapy

> Provenge – by Dendreon (Valeant), cell therapy example

 – Autologous peripheral blood mononuclear cells activated with PAPGM-CSF (sipuleucel-T)

 – Treatment of asymptomatic or minimally symptomatic metastatic (non-visceral) castrate resistant prostate cancer

 – approved in Apr2010. ~$100K/treatment. First line treatment recommendation.
Today’s ATMP

sCT Example
Today’s ATMP
TEP Example

> tissue-engineered product (TEP) medicines: contains or consists of engineered cells or tissues

> Tissue Based ATMPs may treat cartilage defects, tissue replacement

> Holoclár – by Holostem Terapie Avanzate S.R.L., tissue-engineered product example
 – Ex vivo expanded autologous human corneal epithelial cells containing stem cells
 – Treatment of adult patients with moderate to severe limbal stem cell deficiency unilateral or bilateral, due to physical or chemical ocular burns.
 – Approved in Feb2015. 1st stem cell based ATMP.
Today’s ATMP
TEP Example

Before Holoclar®

After Holoclar®
Today’s ATMP
An explosion in research

> Q1 2015: 466 Clinical trials underway
 – Ph. I: 150
 – Ph. II: 288
 – Ph. III: 48

> Q1 2019: 1060 Clinical trials underway
 – Ph. I: 349
 – Ph. II: 618
 – Ph. III: 93

> Growth rate of about 19%

> Attrition rate consistent over 4 years

> Data from Alliance for Regenerative Medicine (ARM), https://alliancerm.org/
Today’s ATMP
Comparaison to mAb, Q4 2018 data

Data as of November 2018. Totals include only antibody therapeutics sponsored by commercial firms; those sponsored solely by government, academic or non-profit organizations were excluded; biosimilars and Fc fusion proteins were excluded.

Antibodies to watch in 2019; Hélène Kaplon & Janice M. Reichert
http://orcid.org/0000-0003-0400-1951;
https://doi.org/10.1080/19420862.2018.1556465
Current Needs

Typical ATMP production

<table>
<thead>
<tr>
<th>Fed batch</th>
<th>Plasmid Manufacturing</th>
<th>Typical Viral Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCB</td>
<td>WCB</td>
<td>WCB</td>
</tr>
<tr>
<td>Inoculum</td>
<td>Inoculum</td>
<td>Inoculum</td>
</tr>
<tr>
<td>Scale up bioreactor</td>
<td>Scale up fermentation</td>
<td>Scale up bioreactor</td>
</tr>
<tr>
<td>Production bioreactor</td>
<td>Production fermentation</td>
<td>Production bioreactor</td>
</tr>
<tr>
<td>Harvest</td>
<td>Harvest – plasmid recovery</td>
<td>Transduction</td>
</tr>
<tr>
<td>Capture chromatography</td>
<td>purification</td>
<td>Harvest</td>
</tr>
<tr>
<td>Viral inactivation</td>
<td>formulation</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Polishing chromatography</td>
<td>Typical cold chain supply</td>
<td>DNA removal</td>
</tr>
<tr>
<td>Viral filtration</td>
<td></td>
<td>Polishing chromatography</td>
</tr>
<tr>
<td>Diafiltration</td>
<td></td>
<td>Filtration</td>
</tr>
<tr>
<td>Formulation</td>
<td></td>
<td>Packaging</td>
</tr>
<tr>
<td>Lyophilization</td>
<td></td>
<td>Typical cold chain supply</td>
</tr>
<tr>
<td>Packaging</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Current Needs

Typical ATMP production

> Plasmid Manufacturing
 - WCB
 - Inoculum
 - Scale up fermentation
 - Production fermentation
 - Harvest – plasmid recovery
 - purification
 - formulation
 - Typical cold chain supply

Current Needs

Typical ATMP production

> Fed batch
 - WCB
 - Inoculum
 - Scale up bioreactor
 - Production bioreactor
 - Harvest
 - Capture chromatography
 - Viral inactivation
 - Polishing chromatography
 - Viral filtration
 - Diafiltration
 - Formulation
 - Lyophilization
 - Packaging

> Allogenic
 - WCB
 - Inoculum
 - Scale up bioreactor
 - Production bioreactor
 - Concentration
 - Formulation
 - Packaging
 - Typical Cold Chain Supply

> Autologous
 - Patient donation
 - Formulation for transfer
 - Transfer
 - Cell selection and Expansion
 - Concentration
 - Formulation
 - Packaging
 - Expedited supply

> Scale of this process is per patient
Current Needs
Typical ATMP production

- Allogenic
 - WCB
 - Inoculum
 - Scale up bioreactor
 - Production bioreactor
 - Concentration
 - Formulation
 - Packaging
 - Typical Cold Chain Supply
Current Needs
Typical ATMP production

> Autologous
 – Patient donation
 – Formulation for transfer
 – transfer
 – Cell selection and Expansion
 – Concentration
 – Formulation
 – Packaging
 – Expedited supply

Current Needs
Constraints for ATMP production

> Pharmaceuticals
> Biotech
> Gene Therapy
> Cell Therapy
> Tissue Engineering
> Medical devices

Number of patients treated per item/batch

Difference from liquid suspension batch production
Gene Therapies are generally **viral** products:

- Aseptic
- Viral segregation is critical and may segregate “ballrooms”
- Higher dose per patient = lower treatments per batch

In practice:

- Open processes require Grade A conditions with the appropriate surrounding background environment (Grade B for open systems and Grade C (US) or D (EU) for isolator based systems)
- Potential differences between development and commercial manufacturing. (e.g., CsCl ultracentrifugation versus chromatographic methods.)
- Current process are still exploring virus production by transfection, infection, or stable producer lines that grow in either suspension or adherent conditions.
State of the Art Facilities
Allogenic Cell Therapy

> Allogenic ATMP’s are living cell products:
 – Aseptic

> In Practice:
 – Open processes require Grade A conditions with the appropriate surrounding background environment (Grade B for open systems and Grade C or D for isolator based systems)
 – Many therapies currently require adherent culture operations.
 – Workflows have high space, labor, cost, and logistic demands.
State of the Art Facilities
Autologous Cell Therapy

> Autologous ATMP’s are living cell products and personal medicine.
 - Small volumes
 - Small batches
 - Aseptic

> In Practice:
 - Similar to Hospital or lab compounding pharmacy but with enhanced HVAC and GMP focus
 - Open processes require Grade A conditions with the appropriate surrounding background environment (Grade B for open systems and Grade C or D for isolator based systems)
 - Segregation for each patient-specific batch to avoid cross-contamination.
 - Workflows have high space, labor, cost, and logistic demands.
State of the Art Facilities
Autologous Cell Therapy
State of the Art Facilities

Autologous Cell Therapy
Tomorrow’s ATMPs
Natural Selection of ATMP production

> Breakthrough drugs may treat large populations of incidence and prevalence.

> Rare disease therapies will only need to treat incidence, but broad categories of treatments will be available.

> Cell and gene therapy may become cheap and safe enough to be used on less life-threatening conditions.

> Advanced tissue repair and surrogate tissue organ may drive adhesion based cell culture.
> Technologies EVOLVE from general technologies to more specific technologies.

> Sometimes technologies INHERIT traits from separate parent technologies.

> The technologies that survive are the ones that are best captured by the marketplace.

> The marketplace is best served by offerings that suit the specific needs of the customer at the lowest cost.
Future Facilities
Tomorrow and the next few years

> TOMORROW’s facility may include
 – Prodigy / Cocoon
 – 3DBio / Cellink
 – Isolators / Clean rooms
Future Facilities
10 to 15 years out

> General production in a biotech environment LEADS TO
 – More technical production in a biotech environment
 – Less technical production in any environment

> Therefore THE FUTURE facility
 – Will include technologies that we cannot recognize
 – Machines that will produce drugs without any human intervention
Future Facilities
10 to 15 years out

➢ General production in a biotech environment LEADS TO
 – More technical production in a biotech environment
 – Less technical production in any environment
➢ Therefore THE FUTURE facility
 – Will include technologies that we cannot recognize
 – Machines that will produce drugs without any human intervention
Future Facilities
10 to 15 years out

> General production in a biotech environment LEADS TO
 – More technical production in a biotech environment
 – Less technical production in any environment

> Therefore THE FUTURE facility
 – Will include technologies that we cannot recognize
 – Machines that will produce drugs without any human intervention
Future Facilities
10 to 15 years out
Future Facilities
10 to 15 years out
Future Facilities
10 to 15 years out

> The well established IC industry, data warehousing, and biotech will cross-pollinate and the combined industry will INHERIT traits from:

– Mass production of cells
– Mass Production of computer chips.
– Mass warehousing of discrete information.

> Therefore THE FUTURE facility

– Will be able to provide customized therapies to large populations
– Will have global redundant supply chains
Future Facilities

10 to 15 years out

> GlobalFoundries Fab 8 In Malta, NY
Bridging the Gap
3 to 10 years out

> Be prepared for the next big thing
 – Have expert Project Management, Finance, Engineering, Quality, etc. teams
 – PD, tech transfer, manufacturing
> Don’t bank on a successful technology
QUESTIONS?
THANK YOU!