

ISPE Boston Chapter Webinar

ISPE Baseline Guide Volume 5, 2nd Edition

Chip Bennett Assistant Director, Global C&Q CAI

Webinar 05 March 2020

Chip Bennett, PMP

Assistant Director, Global C&Q, CAI

- > CQV Program Development Lead SME
- > QRM SME

Pharma/CQV since 2000

Contact:

- <u>chip.bennett@cagents.com</u>
- > (636) 236-1776

A Project Manager and Senior Validation Engineer, Chip is a PMI® Certified Project Management Professional (PMP) with 20 years of experience in the pharmaceutical and regulated non-pharmaceutical industries and with expertise in risk-based verification, aseptic manufacturing, cleaning validation, quality systems, and owner project management. Chip is responsible for developing and implementing Quality Risk Management (QRM) based Commissioning and Qualification programs and projects, with a focus on assessing and training clients regarding development, implementation, and transition to risk-based approaches.

Agenda

ISPE Baseline Guide Volume 5, 1st Edition

- Industry and Regulatory Drivers
- QRM Shortcomings

The Path to ISPE Baseline Guide Volume 5, 2nd Edition

- Business Drivers
- QRM as Regulatory Driver and Industry Focus
 Differences Between 1st and 2nd Editions
- QRM Incorporation and Other Benefits
- Defined/Retired Terms and Activities
- Integrated C&Q Process and Deliverables
- Risk Assessment and Supporting Processes

Applying QRM to C&Q Processes Benefits and Opportunities

Q&A

Before We Begin...

Caveats:

I am *not* a CoP steering committee member or an author/contributor to the Guide

This is *not*, and does not replace, the official CoP Presentation

About This Presentation:

More than just the content of the revised Guide Historical context and evolution Practical implementation based on project experience

ISPE Baseline Guide Volume 5, 1st Ed Where were we in 2001?

ISPE Baseline Guide Volume 5, 1st Ed

Drivers for 1st Edition:

Industry Drivers

- V-Model delivery cost, schedule, effectiveness – duplicated effort
- Inconsistent C&Q terminology
- Inconsistent interpretation of CGMP requirements

Regulatory Drivers

- Alignment with industry regarding C&Q expectations
- Consistent C&Q terminology and approach
- Focus effort on product quality, risk

ISPE Baseline Guide Volume 5, 1st Ed

Challenges Implementing 1st Edition:

QRM Not Incorporated

- PPK (CQAs/CPPs) not understood/documented
- Risk to product quality not identified, assessed, or controlled
- Testing not commensurate with risk
 Siloed Roles and Responsibilities
- Engineering and Quality roles and responsibilities overlap and contradict Inefficient Approach
- Prescriptive testing strategy
- "Test everything" mentality
- Engineering and Qualification: nonvalue-added testing redundancy

Business Drivers The path to ISPE Baseline Guide Volume 5, 2nd Ed.

Industry Drivers: Desired Start-Up Experience: Speed to Market

Industry Drivers: Desired Start-Up Experience: Speed to Market

Regulatory Drivers: QRM The path to ISPE Baseline Guide Volume 5, 2nd Ed.

Regulatory Drivers: QRM

2001:

- ISPE, Baseline Guide Vol 5, 1st Ed: Commissioning and Qualification [C&Q Approach] 2004:
- ICH Q8, Pharmaceutical Development (revised 2008) [CQA, CPP, QbD]
- FDA, *Pharmaceutical Development for the 21st Century A Risk-Based Approach* 2005:
- ISPE, White Paper: Risk-Based Qualification for the 21st Century [RBV Principles]
- ICH Q9, Quality Risk Management [QRM] 2007:
- ASTM E2500, Spec, Design, and Ver. of Pharma/Biopharma Mfg. Sys and Equip (rev. 2013, 2019) [RBV Process]

2011:

ICH Q10, Pharmaceutical Quality System [Control Strategy]

2011:

- FDA, Guidance for Industry Process Validation: General Principles and Practices
- ISPE, Guide: Science and Risk Based Approach for the Delivery of Facilities, Systems, and Equipment
- ISPE, Good Practice Guide 10: Applied Risk Management for Commissioning and Qualification 2015:
- EudraLex, Volume 4, Annex 15: EU Guidelines for GMPs for Medicinal Products for Human and Veterinary Use

2019:

• ISPE, Baseline Guide Vol 5, 2nd Ed: *Commissioning and Qualification* [QRM-Based Integrated C&Q]

Regulatory Drivers: QRM

US FDA Report (2004):

Pharmaceutical Development for the 21st Century – A Risk-Based Approach

 Innovation, QRM/Quality Systems, Risk-Based Approaches, Critical Areas, State of the Art Science

US FDA Guidance for Industry (2011): Process Validation: General Principles and Practices

 QRM/Quality Systems, Risk-Based Decisions, Criticality as a Continuum, Control Commensurate with Risk, Less Reliance on Terminology

EU EudraLex, Volume 4, Annex 15 (2015):

EU Guidelines for GMPs for Medicinal Products for Human and Veterinary Use

 Control of Critical Aspects, QRM Approach, Risk Assessment Basis/Justification for Qualification/Validation

QRM: Industry Focus The path to ISPE Baseline Guide Volume 5, 2nd Ed.

Industry Focus: QRM

2001:

- ISPE, Baseline Guide Vol 5, 1st Ed: Commissioning and Qualification [C&Q Approach] 2004:
- ICH Q8, Pharmaceutical Development (revised 2008) [CQA, CPP, QbD]
- FDA, *Pharmaceutical Development for the 21st Century A Risk-Based Approach* 2005:
- ISPE, White Paper: Risk-Based Qualification for the 21st Century [RBV Principles]
- ICH Q9, Quality Risk Management [QRM] 2007:
- ASTM E2500, Spec, Design, and Ver. of Pharma/Biopharma Mfg. Sys and Equip (rev. 2013, 2019) [RBV Process]

2011:

ICH Q10, Pharmaceutical Quality System [Control Strategy]

2011:

- FDA, Guidance for Industry *Process Validation: General Principles and Practices*
- ISPE, Guide: Science and Risk Based Approach for the Delivery of Facilities, Systems, and Equipment
- ISPE, Good Practice Guide 10: Applied Risk Management for Commissioning and Qualification 2015:
- EudraLex, Volume 4, Annex 15: EU Guidelines for GMPs for Medicinal Products for Human and Veterinary Use

2019:

• ISPE, Baseline Guide Vol 5, 2nd Ed: *Commissioning and Qualification* [QRM-Based Integrated C&Q]

Industry Focus: QRM

CQV Benchmarking

450 400 350 300 250 200 150 100 50 0 Formal Commissioning, followed by IOQ QRM-based integrated Commissioning & Formal Commissioning, followed by with complete repeat of testing streamlined IOQ only repeating critical Qualification testing (via Risk Assessment)

Average C&Q Generation/Execution, Baselined Systems

■ Cx Gen ■ IQ Gen ■ OQ Gen ■ Cx Exe ■ IQ Exe ■ OQ Exe

ISPE Baseline Guide Volume 5, 2nd Ed Industry Focus: QRM

Evolution of C&Q Strategy

Industry Focus: QRM

2001:

- ISPE, Baseline Guide Vol 5, 1st Ed: Commissioning and Qualification [C&Q Approach] 2004:
- ICH Q8, Pharmaceutical Development (revised 2008) [CQA, CPP, QbD]
- FDA, *Pharmaceutical Development for the 21st Century A Risk-Based Approach* 2005:
- ISPE, White Paper: Risk-Based Qualification for the 21st Century [RBV Principles]
- ICH Q9, Quality Risk Management [QRM] 2007:
- ASTM E2500, Spec, Design, and Ver. of Pharma/Biopharma Mfg. Sys and Equip (rev. 2013, 2019) [RBV Process]

2011:

ICH Q10, Pharmaceutical Quality System [Control Strategy]

2011:

- FDA, Guidance for Industry *Process Validation: General Principles and Practices*
- ISPE, Guide: Science and Risk Based Approach for the Delivery of Facilities, Systems, and Equipment
- ISPE, Good Practice Guide 10: Applied Risk Management for Commissioning and Qualification 2015:
- EudraLex, Volume 4, Annex 15: EU Guidelines for GMPs for Medicinal Products for Human and Veterinary Use

2019:

• ISPE, Baseline Guide Vol 5, 2nd Ed: *Commissioning and Qualification* [QRM-Based Integrated C&Q]

Baseline Guide Volume 5: 1st Ed vs 2nd Ed What has changed?

Benefits

QRM Incorporation

Science- and Risk-Based Approach Focus on Quality by Design (QbD) Incorporates Industry Standards

Other Benefits

Consistent, Compliant Approach Efficient Approach Risk-Based Lifecycle Approach

Defined, Retired Terms

Defined:

- Commissioning
- Qualification
- Commissioning and Qualification (C&Q)
- Validation
- Verification

Retired:

- Indirect Impact
- Component Criticality Assessment
- V-Model
- Enhanced Documentation
- Enhanced Commissioning
- Enhanced Design Review
- Leveraging

Defined Terms

Commissioning	A well-planned, documented, and managed, engineering approach to the start-up and turnover of facilities, systems, utilities, and equipment to the end user that results in a safe and functional environment that meets established design requirements and stakeholder expectations.
Qualification	For the purpose of this guide, a <i>process</i> to demonstrate and document that the critical manufacturing facilities, systems, utilities, and equipment are suitable for the intended purpose.
Commissioning and Qualification (C&Q)	For the purposes of this Guide, the term Commissioning and Qualification (C&Q) is used to describe the <i>process</i> for establishing that facilities, systems, utilities, and equipment are suitable for their intended purpose.
Validation	Establishing documented evidence which provides a high degree of assurance that a specific process will consistently produce a product meeting its predetermined specifications and quality attributes (FDA Process Validation Guidance, 1987)
Verification	An <i>activity</i> that is performed within the C&Q process to document that the manufacturing facilities, systems, utilities, and equipment are suitable for the intended purpose.
Critical Design Element (CDE)	Design functions or features of an engineered system that are necessary to consistently manufacture products with the desired quality CDEs are identified and documented based on technical understanding of the product CQAs, process CPPs, and equipment design/automation. CDEs are verified through C&Q.

Defined, Retired Terms

Defined:

- Commissioning
- Qualification
- Commissioning and Qualification (C&Q)
- Validation
- Verification

Retired:

- Indirect Impact
- Component Criticality Assessment
- V-Model
- Enhanced Documentation
- Enhanced Commissioning
- Enhanced Design Review
- Leveraging

Integrated C&Q Process

Figure 1.1: Science and Risk-Based C&Q Process Map

Integrated C&Q – Roles and Responsibilities

Engineering

- Role: system delivery
- Focus: system fitness for use
- Responsibility: *verification* (testing and documentation)
 Quality
- Role: product quality
- Focus: PPK, risk control strategy, system design, and verification
- Responsibility: oversight (approval)

QRM-Based C&Q: Roles and Responsibilities

R&D/1	ech Ops	Sul	Subject Matter Experts (SMEs) Following GEPs							
РРК	Risk Assessment	Design Review	Verification Planning	Verification Te	esting	Acceptance				
List of CQAs, CPPs	Identification of CAs	List of CDEs, DQ	C&Q Plan	FAT SAT Startup Commissioning Installation Verification Functional Testing	Performance Testing	Acceptance and Release Report	Operation Continuous Improvement			
Approved by Quality	Approved by Quality	Approved by Quality	Approved by Quality	Approved by Independent SME Review Ap		pproved by Quality				
Process Development Design				Release						

QRM-Based C&Q: Roles and Responsibilities

Document	Quality	Pre-Approvers	Technical		Quality	Post-Approvers	Tochnical	Typical Document
C&Q Plan	Cruainty 1	Not applicable	e		A	A	A	Technical
User Requirements Specification	Not applicable				A	A	A	Technical
System Classification	1	Not applicable	e		А	А	А	Technical
System Risk Assessments	1	Not applicable	e		А		А	Quality
Design Review	1	Not applicable	e			А	А	Technical
Design Qualification	1	Not applicable	e		А	А	А	Quality
Commissioning Testing documentation, (e.g., FAT, SAT)		A	А			А	А	Technical
Qualification Testing Documentation where used	А	А	А		А	А	А	Quality
Turnover Package	1	Not applicable	e			А	А	Technical
Commissioning Acceptance and Release Report	1	Not applicable	e			A	A	Technical
Qualification Acceptance and Release Report (including Testing from Commissioning)	Not applicable				А	А	А	Quality
Traceability Matrix	1	Not applicable	e		1	Not applicable	e	Technical
Vendor Assessment	1	Not applicable	e		А		A	Technical

Quality Risk Management Introduction and application to C&Q Processes

ISPE Baseline Guide Volume 5, 2nd Ed ICH Q9: QRM Process

QRM as a Holistic Lifecycle Process

Process Development	Define Product/Process Knowledge (PPK): CQA, CPP
Risk Assessment	Identify Risks to Product Quality
Risk Control	Identify Critical Aspects (CAs) to Mitigate Identified Risks
Risk Review	Design Review: Identify CDEs / Risk Control Strategy
Quality by Design (QbD)	Design Qualification: Design of Risk Controls (CAs/CDEs) Acceptably Mitigates Risk
C&Q Strategy	Verify CAs/CDEs, Testing Rigor Commensurate w/Risk
Risk Review	Periodic Review/Revalidation, Continuous Improvement, Change Management, Deviation/CAPA Management
	Pharmaceutical Knowledgeispe.org

30

Applying QRM Concepts to C&Q

Relationship Between CQA, CPP, CA, and CDE

ISPE Baseline Guide Volume 5, 2nd Ed Applying QRM to C&Q Process Deliverables

	ID	Requirement	Туре	Source
	4.3.1.	The WFI storage vessel shall be equipped with a jacket to control stored water temperature.	Business	Company Engineering Standard
ĺ	430	The WFI storage vessel shall be equipped with an	Bueingee	Company

		Product and Proce	ss Knowledge				Raseline System Rick Assessment								
Ref. #	Operations Sequence	Process Description	CQA	CPP	CA	Impact on CQA	How CQA can be Impacted	Design Controls	Recipe Parameters	Associated Alarm	Procedural Controls	Comments	Residual Risk Determination		
	Distribution Loop	Charges water into the ve from WFI distribution loop	d Water Quality, Chemical	Return Loop Water Conductivity	Control, Monitoring Alarming	Direct	Water TOC, Conductivity, p failure	Inline Conductivity Measurement	N/A	Return Loop Conductivity	Passivation	N/A	Low		
1	Return Line	supplied by the WFI storag tank.	Water Quality, Microbial	Return Loop Water Temperature	Control, Monitoring Alarming	Direct	Water bioburden, endotoxi failure	Return Loop Temperature Sensor	Water storage temperature, 20 - 80°C	Return Loop Temperature	Passivation	N/A	Low		
С	QAs. C	: RR:sk M	itigatio	Materials of construction non- additive, non- reactive, non- reactive, non-	Design/ Constructio		Water TOC, Conductivity, pl failure	Materials of construction	ess Risks	to CQA	Passivation	N/A	Low		
a	re inpu	t A larms	, Proc	contraction edura	Co	ntrol	Water TOC, Conductivity, p S failure	Materials Failu	re to Con	trol CPP	S Passivation	N/A	Low		
				Materials of construction suitable for sanitization	D e sign/ Constructio	Not Direct	Water bioburden, endotoxi failure	Materials of construction	N/A	N/A	N/A	N/A	Low		
3	Vessel Bottom/Outlet	Provides outlet for water circulate through the WFI distribution loop.	Water Quality, Microbial	Drainability	Design/ Constructio	Direct	Water bioburden, endotoxi failure	gienic design (drainability)	N/A	N/A	N/A	N/A	Low		
4	Spray Ball	Provides coverage of all wetted surfaces inside the vessel for cleaning	Water Quality, Chemical	Cleanability	Design/ Constructio	Direct	Water TOC, Conductivity, p failure	Hygienic design (spray ball coverage)	N/A	N/A	CIP cycle development	N/A	Low		
5	Agitator	Agitates water inside the vessel to ensure homogen temperature during hot w sanitization.	s N/A	N/A	N/A	Not Direct	Water bioburden, endotoxi failure	Agitator speed controller, agitator speed indicator	Agitation speed, 50 - 300 RPM	N/A	Agitation required during vessel hot water sanitization	N/A	Low		
6	Vessel Jacket	Uses plant steam to contr recirculated water temperature ≥ 75°C during sanitization.	Water Quality, Microbial	Recirculated Water Temperature	Control, Monitoring Alarming	Not Direct	Water bioburden, endotoxi feilure	sel jacket-controlled water temperature, vessel imperature probes, return loop temperature sensor	Recirculated water temperature, ≥ 75°C, Sanitization time 30 - 120 min	Return Loop Temperature, Vessel Temperature	N/A	N/A	Low		
		Uses plant steam and plant chilled water to maintain stored water at setpoint.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Low		
7	Plant Steam Supply	Supplied to vessel jacket for stored water temperature control and sanitization.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Low		
8	Plant Chilled Water Supply	Supplied to vessel jacket for stored water temperature control.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Low		
9	Instrument Air Supply	Supplied to vessel instrumen and solenoid valves.	its N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Low		
10	Electrical Supply	Supplied to agitator.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Low		

Applying QRM to C&Q Process Deliverables

ispe.org | 40

	User Requirement ([Document #])			Risl ([D	k Assessi Document	ment t #])		
URS Ref. #	URS Description	Type	RA Ref. #	Impact	CA	Risk	Aligned?	URS/RA Gap Comments
4	User Requirements	_						
4.1	Critical Quality Requirements and Critical Process Parameter	sk						
4.1.1	Water stored in the WFI storage vessel shall meet compendial Activities for Massesson Injection, USP.	ent∞	N/A	N/A	N/A	N/A	N/A	N/A
4.1.2	Surfaces and components that come into contact with WFI must be constructed of materials that are non-additive, non-reactive, and non-absorptive.	CPP	2	Direct	Design/ Construction	Low	Yes	N/A
4.1.3	The WFI storage vessel and its components must be fully drainable.	СРР	3	Direct	Design/ Construction	Low	Yes	N/A
4.1.4	The WFI storage vessel and its components must be accessible for cleaning and constructed materials suitable for intended cleaning agents.	CPP	4	Direct	Design/ Construction	Low	Yes	N/A
3.2	Process Requirements							
4.2.1	The WFI storage vessel shall have a working volume ≥ 2,000L.	Business	N/A	N/A	N/A	N/A	Yes	N/A
4.2.2	The WFI storage vessel shall be capable of controlling stored water temperature at set point 1° C, within a range of 20° C – 80° C.	Business	7	N/A	N/A	N/A	Yes	N/A
4.2.3	The WFI storage vessel shall be capable of self-sanitization, controlling water temperature at 75°C with recirculation flow rate of \ge 25 gallons per minute.	Quality	7	Not Direct	N/A	N/A	Yes	N/A
4.2.4	The WFI storage vessel shall be capable of controlling agitation speed during sanitization at point 1.5 RPM, within a range of 50 RPM – 300 RPM.	Quality	6	Not Direct	N/A	N/A	Yes	N/A
4.3	Equipment, Design, and Construction Requirements							
4.3.1	The WFI storage vessel shall be equipped with a jacket to control stored water temperature.	Business	6	N/A	N/A	N/A	Yes	N/A
4.3.2	The WFI storage vessel shall be equipped with an agitat Rick Contro	ole (CA	s) tr		to CC	λ	Yes	N/A
4.3.3	The WFI storage vessel shall be supplied with one or mole SLOIN COTTUN		າວ) แ	ave		X MJ	Yes	N/A
4.3.4	The WFI storage vessel and its components must be according to the provide the storage vessel and constructe of materials suitable for sanitization.	d Quality	2	Not Direct	N/A	N/A	Yes	N/A

		User Requirement ([Document #])					Design Review ([Document #])				
URS Ref.	L	106 Percelation	Requirement	Design Day, Ma	Dec	Design	Desire Dos Enerification Description	Re iremen	Addressed?	CDE	DQ/URS Gap Comments
4	User Requirements				_	_		tering	(17Ng		
4.1	Critical Guelity Requirements and C	ritical Process Parameters									1
4.5.3	Water stored in the Will storage was Injection, USP.	al shall over compendial specifications for π or ${f UR}$	S ->	Design	Re	view	office conductivity mener, range 0.01 - 5.00 µS	Tes	Yes	0 12345-01	N/O.
4.1.2	Surfaces and components that come are non-additive, non-reactive, and n	into contact with WTI must be constructed of materials that on absorptive.	099	0w6 102-12345	1	Sheet 1	Vessel, agistor vhalt/impellers 3162 stainless steel; Gaskets USP Class VE elastomer	Tes	۶m	component monetals of construction	N/X.
4.1.5	The WTI storage vessel and its compo	seerts must be fully drainable.	OT	DWD 812 12545	1	Sheet 1	Wessel bottom conical	705	365	Vesaal bottom	54/A
4.1.4	The WFI stonage vessel and its compo- materials as table for intended cleaning	onents must be accasable for cleaning and constructed of ng agents.	07	DWG 102 12345	1	Sheet 1	Spray ball pattern, wetlad part materials of construction (refer to 4.1.2)	10	10	Strate Spray bell coverage, listed component materials of corestruction	N/A
1.2	Process Requirements										
4,2.3	The WEI storage vossel shall have a v	vorking volume 2 2,000L	Pesifikas	DWB-302-13545	1	Sheet 1	Working volume 2,000.	745	R/A	N(0.	N/A
4.2.2	The WEI storage vessel shall be capab within a range of 20°C - 80°C.	ble of controlling stored water temperature at set point 8 1%	Besitvess	DWS-892-12545	1	Sheet 1	Chilled water supply temperature 15C, Saturated plant steam supply pressure 50 lbs	Tes	N/A	N/A	N/A
4.2.3	The WHI shorage wasaf shall be capal 2725 with resinculation flow rate of a	de of self-sentization, controlling water temperature at 2 25 gelions per minute.	Quality	DWG 102-12345	1	Sheet 1	Recirculation rate 25 GPM, Sentitization temperature BIC	Tes	Yes	TIC-12345-01	N/A.
4,2,4	The WEI storage vessel shall be capab point a S RPM, within a range of SOR	ble of controlling agitation speed during sanitization at set PM – 300 RPM.	Guilty	0965-002-12545	1	Sheet 1	Agitator speed controller, range 25 - 353 87M	Tes	3m	\$10.12345-01	N/A
4.8	Equipment, Design, and Construction	n Regulaements									
4.8.1	The WFI storage usual shall be equip	ped with a jacket to control stored water temperature.	Russinger	DWG 202-13345		Sheet 1	National second packet	Tire.	R/A	Ng (3,	NO.
4.3.2	The WHI storage vessel shall be could	ped with an agrator.	Business	0900-032-12545	1	Sheet 1	Acre agtistor model 123	Tes	N/A	N/A	N/A
4.3.3	The WFI storage vessel shall be suppl	led with one or more spray balls.	Scaltwoo	DWG-02-11345		Sheet 1	Two sprag balls	Ten	N/A	N(0.	N/A
4,3,4	The WFI sharage vessel and its compo- materials suitable for sanitization.	onerts must be accouble for samitation and constructed of	Guality	0W6 X02 12345		sheet 1	ce to CQAS,	Tes	105	component evaluation	N/A.
4.3.5	Wetted metallic surfaces shall meet s	pecifications for ASME DPC SPS.	Quality	DWG-892-12345		Sheet 1	Wetted part state-toils of construction (refer to 4.1.2)	Tes	Yes	component materials of construction	N/0.
4.3.6	Webed elastomers shall meet specific	cations for USP Class VL	Quality	DWG-892-12545	1	Sheet 1	Wetted pert materials of construction (refer to 4.1.2)	70	7m	component materials of construction	N/A.

3 Re	sults and Summary					_		ТТ	
URS Ref. #	Requirement	Туре	Design Doc. No.	Rev	Design Doc. Ref.	Design Doc Specifica on Description	UF Me	C/ A dret s	ed CDE
4	User Requirements	-							
4.1.1	Water stored in the WFI storage vessel shall meet compendial specifications Design ^{ct} Sa USP.	tisf	ied Qu	alit	y UR:	Inline conductivity meter, Stange 0.01 - 5.00 µS	res [Des Satis	gn of CDEs fies CAs
4.1.2	Surfaces and with WFI muse are non-addit absorptive. have been inc	tha corp	t CQA orated	CP I in	P bas to the	ed risk con design	trols	Ye	Listed component Risk rials of construction
4.1.3	The WFI storage vessel and its components must be fully drain ible.	CPP	DWG-XYZ- 12345	1	Sheet 1	Vessel bottom conical	Yes	Ye	Vessel bottom slope
4.1.4	The WFI stora be accessible materials suit materials suit materials suit	tha to p	t Critic roduct	al / qu	Aspeo ality	cts acceptate part materials of construction (refer to 4.1.2)	yes	Ye	Scrav ball coverage, (CASyponent maternals of CDESt) in
3.2	Process Requirements								Identified
4.2.3	The WFI storage vessel shall be capable of self- sanitization, controlling water temperature at ≥ 75°C with recirculation flow rate of ≥ 25 gallons per minute.	Quality	DWG-XYZ- 12345	1	Sheet 1	Recirculation rate 25 GPM, Sanitization temperature 80C	Yes	Ye	TIC-12345-01
4.2.4	The WFI storage vessel shall be capable of controlling agitation speed during sanitization at set point ± 5 RPM, within a range of 50 RPM – 300 RPM.	Quality	DWG-XYZ- 12345	1	Sheet 1	Agitator speed controller, range 25 - 350 RPM	Yes	Ye	SIC-12345-01

	User Reg ([Docu	puirement ment 4])						Verifi	ication			
IDe			Des la mont	Madiantas	a facet and an	Test Care		Test Ches			Requirement	Test Danst
Ref			Туре	Activity	DOC. Rr _	Neferen _		Referen _		Actual Result	Met?	(Pass / F)
4	User Regainements			_	-	-					(avin)	-
4.1	Control Dealers Research and Control Research	And the second se										
	water stored in the WFI storage vessel shall meet o Injection, USP.	ormendial specifications for water iUR	S>	Veri	fica	tion	Testing	50	100, 5 500 ppb Cand. (25G) x 1.3 µ5/cm pH5.0 - 7.0 Microbial x 10 chi/100ml End00min 50.25 EU/ml	TOC: 25.000 Cond. (25C): 0.5 µ5/cm pH: 6/0 Microbial ND Endotoxia ND	Yes	Pess
434	Surfaces and components that come into contact wi are non-additive, non-reactive, and non-absorptive.	th WFI must be constructed of materials that	079	FAT	FMT-(2345-0)	а	Materials of Construction Wellication	ngin.	Materials as specified, certificates attached.	Materials as specified, cortificates attached.	Yes	Pass
-33	The WFI storage vessel and its components must be	fully chainable.	CPP	1MI	FAT-12345-01	7	Vessel Drainability Verification	N/A	No pooling stater visible	No pooling noter visible	Yes	Pass
131	The WiFi starage vessel and its components must be materials suitable for intended cleaning agents.	accessible for cleaning and constructed of	699	FAST	643-52345-05	10	Spray Ball Coverage Verillication		No ribufasia detected	No ribuliation detected	Yes	Pass
3.2	Process Requirements											
12.1	The WFI storage vessel shall have a working volume	¥1,000L	Besireto	EAT.	FAT-12545-00	1	Drawing Verification	NeA	Volume it 2,000L	Volume 2,000L	Yes	Pessi
2.2	The Wit storage vessel shall be capable of controllar within a range of 20°C - 80°C.	g stored water temperature at set point ± 1%,	Business	ov	OV-12345-01	5	Temperature Control Verification	6	MAR GOYC # 1°C High: BOYC # 1°C	Mat: 60 - 61°C High: 80 - 61°C	Yes	Paus
23	The WFI storage wessel shall be capable of self-savit 75°C with excitoulation flow rate of k 25 galaxis per	Institute, controlling water temperature at 5 minute.	Quality	ov	09-12345-01	6	Sanifization Cycle Verification	11	Savidization Temp: 2 75% Savidization Temp: 2 30 min	Sanitization Deng: 25 - 72%. Sanitization Time: 30 min	Yes	Pasa
2	The WFL storage vessel shall be capable of controllin point ± 5 RPM, within a range of 50 RPM – 500 RPM	g agitation speed during sanklawion at set	Quality	ov	OV-12345-01	3	Agitation Control Verification	7	Low: SO RPM ± 5 RPM Mid: ETS RPM ± 5 RPM High: 100 RPM ± 5 RPM	Low: 49 - 51 RPM Mid: 173 - 177 RPM High: 295 - 303 RPM	Yes	Pass
4.3	Equipment, Design, and Construction Requirement	5										
131	The Will storage vessel shall be equipped with a jack	at to control stored water temperature.	Destructs	E.A.F	FAT-12345-99	1	Orwaying Verification	N/A	lacter rotaled	lactors installed	Yes	Page
.3.2	The WE starage associated be equipped with an ap	and a second	Business	6.6T	FAT-53145-88		Drawing Vivillication	N/3.	Asitatas installed	Acree Model 133 agitator installed	Yes	Pass
5.5	The WiTI storage ressel shall be supplied with one of	r more spray balls.	Basirwas	EV4	FAT-32545-05	3	Drawing Verification	N/A	3 Spray Balls installed	2 Spray Balls installed	Yes	Pess
3.4	Verificatio	n testing tra	aces	to C	QAs	s, Cl	PPs and	mee	ets spe	cification	Yes	Pini
.15	Weited metallic surfaces shall even specifications is	e ASME DPC SES.	Quality	D.C	FAT-12345-01	3	Materials of Construction Verification	Ng/A	Materials as specified, certificates attached.	Materials as specified, contificates attached.	Yes	Page
4.16	Wetted elastomens shall meet specifications for USP	Class VI.	Quality	FAT	FAT-12345-01	1	Materials of Construction Verification	N/3.	Materiais as specified, certificates attached.	Materials as specified, certificates attached.	Yes	Paus

Applying QRM to C&Q Process Deliverables

ispe.org 51

Benefits/Opportunities

Benefits and opportunities from ISPE Baseline Guide Volume 5, 2nd Ed.

Benefits of Changes to C&Q Processes

Process	Historical Approach	Apply	New Approach	Benefit
C&Q Testing	Qualification protocols at project end with testing redundant to engineering lifecycle	Good Engineering Practices	Qualification process integrated into engineering project without non-value- added redundant testing	Efficient use of resources and reduced pressure on project schedule
Requirements	Qualification testing based on equipment specifications and capabilities	Quality Risk Management	Testing considers controls , detection mechanisms, and all quality systems	Focuses qualification efforts on defined critical aspects
Design	Design review applied inconsistently with unstructured Quality involvement	Systematic Design Review	Design review well-directed with defined Quality involvement	Enables appropriate and defendable Quality oversight
Change Management	Changes are not well- controlled until a system is qualified and released for use	Engineering Change Management	All changes are effectively managed throughout the engineering project	Prevents the need to perform redundant testing at project end

Applying QRM Through the System Lifecycle

Process Development	Define Product/Process Knowledge (PPK): CQA, CPP
Risk Assessment	Identify Risks to Product Quality
Risk Control	Identify Critical Aspects (CAs) to Mitigate Identified Risks
Risk Review	Design Review: Identify CDEs / Risk Control Strategy
Quality by Design (QbD)	Design Qualification: Design of Risk Controls (CAs/CDEs) Acceptably Mitigates Risk
C&Q Strategy	Verify CAs/CDEs, Testing Rigor Commensurate w/Risk
Risk Review	Periodic Review/Revalidation, Continuous Improvement, Change Management, Deviation/CAPA Management
	Pharmaceutical Knowledge ispe org

Discussion Questions?

For further information, please contact Mr. Chip Bennett at chip.bennett@cagents.com

Chip Bennett Assistant Director, Global C&Q CAI chip.bennett@cagents.com

Supporting Processes

Supporting processes and enablers for the QRMbased integrated C&Q process

System Risk Assessment

Central to Integrated C&Q Approach:

- Defines risk to product quality
- Identifies Risk Controls
- Determines instrument/alarm criticality
- Links verification activities to process and product quality controls
- Provides rationale for C&Q strategy
- Benefits of System Risk Assessment:
- Provides focal point for Design Review and Design Qualification
- Defines control strategy for process risks, focuses Quality on product quality/CDEs
- Provides a focus for C&Q to ensure controls are in place and tested
- Established traceability from Qualification Summary to lifecycle activities and verification

Supporting Processes: System Classification

High-level first pass to identify systems with direct product quality impact Based on system boundaries for integrated testing Same yes-no question methodology, updated questions

Q1	Does the system contain CAs/CDEs or perform functions that serve to meet one or more process requirements (CQAs) including CPPs?
Q2	Does the system have direct contact with the product or process stream and does such contact have the potential to impact the final product quality or pose a risk to the patient?
Q3	Does the system provide an excipient or produce an ingredient or solvent (e.g., WFI) and could the quality (and compliance with the required specifications thereof) of this substance impact the final product quality or pose a risk to the patient?.
Q4	Is the system used in cleaning, sanitizing, or sterilizing, and could malfunction of the system result in failure to adequately clean, sanitize, or sterilize such that a risk to the patient would result?
Q5	Is the system used in cleaning, sanitizing, or sterilizing, and could malfunction of the system result in failure to adequately clean, sanitize, or sterilize such that a risk to the patient would result?
Q6	Does the system use, produce, process, or store data used to accept or reject product, CPPs, or electronic records subject to 21 CFR Part 11 [20] and EU GMP Vol. 4, Annex 11 [21] or the local equivalent?
Q7	Does the system provide container closure or product protection, the failure of which would pose a risk to the patient or degradation of product quality?.
Q8	Does the system provide product identification information (e.g., lot number, expiration date, counterfeit prevention features) without independent verification or is the system used to verify this information?

Supporting Processes: Good Engineering Practice (GEP)

Design Review:

- Ensures design meets URS
- Identifies CDEs that satisfy Critical Aspects
- Supports implementation of Quality by Design (QbD) principles
- Culminates in DQ

Supporting Processes: Good Engineering Practice (GEP)

Engineering Change Management:

- System lifecycle process: Design through Operation to End of Life
- Following final design acceptance, subsequent changes evaluated for quality impact
 - CQA, CPP, CA, CDE
- Project ECM through C&Q
- After system acceptance and release:
 - Site ECM
 - Quality Change Control if quality impact

Supporting Processes: Good Engineering Practice (GEP)

Engineering Quality Process:

- Documented activities during system lifecycle stages:
 - Design/Procurement: Vendor/Supplier Management
 - Implementation: Construction Quality, Commissioning, Handover
 - Operations: Asset Management, Calibration, Maintenance
- Supporting systems throughout system lifecycle:
 - Document/Drawing Control
 - Issue/Punchlist Management
 - Engineering Good Documentation Practice (GDP)

