Pioneering Cell Therapies for the Next Generation ISPE Boston Product Show

October 2, 2024

Speakers

Mark Melilli Cell & Gene Therapy Advanced Manufacturing Lead

Emily Heffernan US Director New Process Technology

Cell Therapy Discussion

Scale Up Considerations

Facility Design Case Study

Connecting Pharmaceutical Knowledge

3

At Vertex, we invest in scientific innovation to create transformative medicines for people with serious diseases with a focus on specialty markets.

Vertex Pharmaceuticals Pipeline Approach

Multiple medicines, multiple modalities

Gene Editing

Gene Therapies

Connecting Pharmaceutical Knowledge

Cell Therapies

Vertex Pipeline: Cell Therapy, Two Different Approaches

Cell Therapy Discussion

Scale Up Considerations

Facility Design Case Study

Cell Therapy Primer, Autologous vs Allogeneic

Allogeneic

Healthy Donor

Scale "Up"

Days

Risk of GvHD

\$\$\$

Cell Source: Scaling Strategy: **Delivery Timeframe:** Safety Profile: Cost:

Patient Specific Scale "Out" Weeks – Months CRS, Neurotoxicity \$\$\$\$

Vertex Pipeline: Cell Therapy, Two Different Approaches

Gene Editing 101

- Ability to add, delete, or alter, genes at a precise location
- Viral, non-viral approaches available for delivery
- Used in combination with cell therapy for "ex vivo" applications

Cell Therapy Discussion

Scale Up Considerations

Facility Design Case Study

Scale Up Considerations

technology platform	cell expansion*	Cell Processing	業 Filling
"Scale Out" Autologous Cell Therapy ¹	Maintenance		
"Scale Up" Allogeneic Cell Therapy ²			

- 1 Gene editing step is unique per product
- 2 Media, Media, Media
- 3 Critically connected to cold transport

Connecting Pharmaceutical Knowledge

ISPE.org

Autologous Scale Up Considerations

Lifecycle stage	Process Description	Room Grades	Fa
FIH / Phase 1 "1 patient"	Laboratory GMP Process Very manual Very "open"	Entirely Grade B Ballroom style	1 Train Increase thr Maximizing bottlenecke
Phase 2 / 3 "Scale Out"	Process improvements (e.g. yield) "Closing" process steps Less manual	Reduced Grade B Some Grade C B/C operations grouped around open-processing steps	Multiple Tra Added equi Filling likely bottleneck.
Late Phase / Commercial "More Scale Out"	Continuation of above	Majority Grade C B space minimized Room setup dictated by personnel/material flows	Continuation Throughput layout

Connecting Pharmaceutical Knowledge

cility Throughput

roughput by equipment up-time until d

ains

pment to relieve bottlenecks. becomes permanent

n of above

significantly effected by site

Allogeneic Scale Up Considerations

Lifecycle stage	Process Description	Room Grades	Fac
FIH / Phase 1 "1 patient"	Laboratory GMP Process Very manual Very "open"	Entirely Grade B Ballroom style	1 Train Throughput by differentia
Phase 2 / 3 "Scale Out or Scale Up"	Process improvements (e.g. yield) "Closing" process steps Less manual	Seed only Grade B Grade C operations either ballroom or suite style	Multiple Trai
Late Phase / Commercial "Scale Up"	Continuation of above Bulk media/factor preps (SU vs SS)	No change	Continuation Throughput layout

Connecting Pharmaceutical Knowledge

cility Throughput

from staggered runs limited ation reactor duration

ins

on # of incubators &

n of above

significantly effected by site

Scale Up Considerations: CDMO vs In-house Manufacturing

- Faster timeframe to manufacture
- Experienced staff
- Limited opportunity for specialized products

In-house

- Greater control over IP
- Facilitates Tech Transfer
- Longer timeframe, investment for facility buildout

Scale Up Summary

How do we as engineers plan & build a manufacturing facility for producing at-scale for an unknown process 2-3 years in the future?

Distill process to fundamentals and understand:

- Autologous & allogeneic scale differently
- Every process is unique: review N=1 process for scalability & closure
- Allogeneic scale-up similar to traditional biologics
- Autologous at scale requires dynamic analysis of personnel/material flows
- Drug delivery method impacts facility design & throughput
- Control of DP after filling is key input to facility design
- CDMOs limited operator experience vs in-house manufacturing

Questions for peers

- can OEMs create modular equipment for autologous scaling-out
- Method for concurrent autologous DP fills

Cell Therapy Discussion

Scale Up Considerations

Facility Design Case Study

Facility Design Case Study: Two Different Products, Two Different Facilities

Connecting Pharmaceutical Knowledge

ISPE.org

Facility Design Case Study: Autologous Cell Therapy Facility

Facility Highlights:

- Gene therapy + cell therapy under one roof
- Grade C corridors
- Grade B CT Suites, VV filling
- Shared locker rooms
- Uni-directional GMP flows

Facility Design Case Study: Allogeneic Cell Therapy Facility

Facility Highlights:

- Cell therapy scale up to 2000L bioreactors
- Media Prep in-house vs. pre-purchased
- Grade D corridors
- Uni-directional GMP flows

Facility Design Case Study: Facility Metrics Comparison

Approach 1: Autologous Cell Therapy

Scale:

Individual Patient

Patient Population:

Facility Square Footage:

Manufacturing Duration:

Final Product Format:

~500 PPY

50,000 ft2

5-7 Days

Cryopreserved

Approach 2: **Allogeneic** Cell Therapy

- Up to 2000L Bioreactors
 - >10,000 PPY
 - 100,000 ft2
 - 60 Days
- Fresh Three Day Window

Multiple modalities are being pursued to develop therapies for a given indication

Scale up to allogeneic production has limited equipment options, equipment closure is key to downgrading cleanrooms

Autologous production is more conservative due to inherent risks with multiple products within the same facility

Allogeneic production can scale to >2000L to address large patient populations, although primarily theoretical in nature

