

USE OF A CONTROL FRAMEWORK TO LIMIT RISK OF AI IN GXP

Brandi M. Stockton Boston GAMP CoP Forum June 6, 2024

Acknowledgements

- Machine Learning Risk and Control Framework authored by Rolf Blumenthal, Nico Erdmann, PhD, Martin Heitmann, FRM, Anna-Liisa Lemettinen, and Brandi M. Stockton.
- Content authored by several members of the GAMP Community of Practice including Nico Erdmann, Martin Heitmann, Carsten Jasper, Stefan Münch, and Brandi Stockton.
- Charles River Laboratories case study and images from ATEM Structural Discovery are shared with permission from Carsten Jasper.

GAMP ML Risk & Control Framework PE 2024 January/February GAMP Edition

Foundation

• ICH Q9 (R1)

4 Key Concepts

- Al Maturity Model (2022)
- AI Governance & QA Framework (2022)
- GAMP 5 2nd Edition Appendix D11 (2022)
- Risk Analysis and Mitigation Matrix (RAMM) (2012)

Based on: A Control Framework to Limit Risk of AI in GxP by S. Münch and B. Stockton 2024 – ISPE European Conference

ispe.org | 3

New Technology! New Trouble?

GAMP 5 Second Edition

Machine Learning Sub-System Life Cycle Model (Appendix D11)

Why a ML Risk and Control Framework?

Collaboration: Using AI/ML requires new competences and close collaboration between various functions

F	

Data rules: Based on training, validation, and test methodologies, every single data point counts

Managing risk: A risk inventory assists to identify relevant hazards and supports interpretation of their analysis

Complexity: Models can be highly complex – sometimes the outcome resembles a black box

Maintain control: A dynamic approach to support control during the model's life cycle

The ML Risk and Control Framework integrates processes, data, and roles

Based on: ML Risk & Control Framework by N. Erdmann, M. Heitmann 2023 – GAMP D-A-CH Forum

ICH Q9 (R1) as Regulatory Background

While ICH Q9(R1) is used as a reference, the ML Risk and Control Framework focuses on the following aspects:

- Initiate Quality Risk Management Process
- Risk assessment
 - Hazard Identification
 - Risk Analysis
- Risk Control
 - Risk Reduction
- Risk Review
 - Review Events

Source: ML Risk and Control Framework, Figure 1, © PE magazine Jan/Feb 2024

Risk Severity Matrix for Initial Risk Classification

		_				
LEVEL VI	Autonomous Learning Al					
LEVEL V	Self-Triggered Learning Al Human Controlled Updates / Human Sampled Operation Control					
LEVEL IV	Self-Triggered Learning Al Human Operation Control / Human Controlled Updates					
LEVEL III	Piece-Wise Locked-State Learning Al					
LEVEL 2	Classical Non-Al					
LEVEL 1	Parallel Al					
Hazard Green: Orange Red: 9	Impact (Color/Number): 1 (Low) : 3 (Med) (High)	_	Indirect Impact to Product Quality and Data Integrity	Direct Impact to GxP Process with No Direct Impact to Patient Safety	Direct Impact to Patient Safety with Human in the Loop	Direct and Immediate Impact to Patient without Human in the Loop

Two dimensions:

Al Maturity – Application & process assessment

Risk Impact – Proximity and influence on the patient

Resulting Hazard Impact:

- Basis for the following risk
 assessment
- Affects the recommended review cycles
- Should enable comparison between systems and models

Source: ML Risk and Control Framework, Figure 4, © PE magazine Jan/Feb 2024

Dark Red: 18 (Very High)

AI Maturity

Risk Impact

2

3

General Principles

Source: A Control Framework to Limit Risk of AI in GxP by S. Münch and B. Stockton 2024 – ISPE European Conference

Examples to illustrate some of the hazard clusters (QC for Adeno-Associated Virus (AAV))

	Risk Assessment	
	Hazard Identification	
••	* Risk Analysis	- h
	Risk Evaluation	naccep
	Risk Control	8 5
	Risk Reduction	- e
	Pink Assessment	- 1 4
	Hisk Acceptance	
2	+	8
••	Output / Result of the QRM Process	
	Risk Review	
	Basian Events	

Use Case AAV: Challenges & Objectives

Challenges

- Requires highly skilled SMEs for review and analysis
- Original method requires high effort and time
- Existing SW is rarely GxP-ready / compliant (no solution available out of the box)
- Thousands of images need to be generated and processed
- Highly subjective results

Objectives

Fully digital E2E process (image creation, singulation, classification)

Development of a ML-model for the AI-based analysis of image data as part of quality assessment

Validation of the model per **ML Risk & Control Framework**

Based on: Assessment of empty/full ratios of Adeno-associated Virus (AAV) capsids using cryogenic electron microscopy by Dr. Nico Erdmann & Carsten Jasper

Challenges Specific for the Use Case

- Uniform availability of real data problematic
- Labeling of existing real data is extremely time-consuming and partly subjective
- Relatively small data difference for clustering
- Difficulties with training, verification, & validation

Based on: Assessment of empty/full ratios of Adeno-associated Virus (AAV) capsids using cryogenic electron microscopy by Dr. Nico Erdmann & Carsten Jasper

Synthetic Data: Background & Challenges

Background

- Synthetic data / images are well-known ٠ in GxP environments:
 - Migration of data validation •
 - Anonymized test data for productive systems • (GDPR)
- Data / image generation:
 - Selective variations ٠
 - Data multiplication •
 - Inter- and extrapolation •
 - Adding noise •
 - Agent models •

Challenges

- Selecting appropriate source data •
- Verifying representativeness and reliability ٠ of synthetic data
- Noise in EM is highly complex •
- Generation of *partially* filled AAV ٠
- Generation of special cases ٠ (e.g., for verification)
- Reality gap: Synthetic data / images are • not a replacement for all variations in real data / images

Based on: Assessment of empty/full ratios of Adeno-associated Virus (AAV) capsids using cryogenic electron microscopy by Dr. Nico Erdmann Carsten Jasper

Illustration / Comparison of Random Samples

Real data

Synthetic data

Images provided by ATEM Structural Discovery, thanks to Carsten Jasper

Scatter Plot – Real World vs Synthetic

(Two-dimensional feature space)

Images provided by ATEM, thanks to Carsten Jasper

Let's Look at Two Examples ...

Based on: A Control Framework to Limit Risk of AI in GxP by S. Münch and B. Stockton 2024 – ISPE European Conference

Risk Analysis with Hazard Clusters along the G5SE D11 development life cycle

Initial Data Set Quality

Hazard Cluster #1

Based on: ML Risk and Control Framework, Figure 5, © PE magazine Jan/Feb 2024

Data Quality in Operation

Hazard Cluster #7

- **Data quality** does not meet the expectations \rightarrow loss in performance expected.
- Risk: Either direct impact to decisions of the ML-enabled application or indirect impact due to confusion of operators
- Examples:
 - Distribution of real-world data may gradually shift \rightarrow more false positive cases or larger errors
 - External or internal data sources may change during runtime \rightarrow drop in performance and a risk to product quality

PHASES

Based on: ML Risk and Control Framework, Figure 5, © PE magazine Jan/Feb 2024

Risk Analysis and Mitigation Matrix (RAMM)

Originally published in PE magazine Jan/Feb 2012

	9	9	9	9	3	3	9	1	1	1	3	9	9	9	9	9			
Monoclonal Antibody					identity	dic variant levels	Yield	Assay)	ty assay (NPLC)	ual Apprearance	Osmolality	Hd	Punty	sidual Host cell protein	sidual Host Cell DNA	Bioburdin	Endoloxin	/iral clearance	
Process Step	Class	Process Parameters or Material Attribute		N.		Ac		0	Pu	N.				æ	a				Total
N-1 stage cell expansion	Personnel	Equipment setup	3	3	1	3	3	3	1		1	1	1	1	1	9	3	1	276
N-1 stage cell expansion	Method	Batch media volume	1	1	1	3	3	3	1	1	1	1	1		1	1	1	1	150
N-1 stage cell expansion	Method	Temperature control	1	1	1	9		9	1	1	1	1	1	1	1	1	1	1	240
N-1 stage cell expansion	Method	Agitation	1	1	1	9	3	9	1	1	1	1	1		1	1	1	1	210
N-1 stage cell expansion	Method	Dissolved Oxygen	3	1	1	9	9	9	1	1	1	1	1	1	1	1	1	1	240
N-1 stage cell expansion	Method	Overlay CO2 flow rate	1	1	1	3	3	3	1	1	1	3	1	1	1	1	1	1	146
N-1 stage cell expansion	Method	Overlay air flow rate	1	1	1	1	3	1	1	1	1	3	1	1	1	1	1	1	128
N-1 stage cell expansion	Method	Sparge air flow rate	1	1	1	3	3	1	1	1	1	1	1	1	1	1	1	1	132
N-1 stage cell expansion	Method	Post-inoculation temperature	51	1	1	9	3	9	1	1	1	1	1	1	1	1	1	1	210
N-1 stage cell expansion	Method	Culture duration	1. 1910	1	p i	3	3	Trate 1	1	1	1	1	1	1	1	1	1	1	132

Based on: A Control Framework to Limit Risk of AI in GxP by S. Münch and B. Stockton 2024 - ISPE European Conference

Structure of the ML RAMM Visualization of risk classes based on quality dimensions

Hazard Imp	oact Factor 🔴	9							
Quality Dimension		Data Quali _{ty}	Human-Al Interaction	Predictive Power	Stability & Robin	Catter	-aubration		
Hazard Clusters	Risks				•/			Risk Control Measure	
Versed Cluster 1	Risk 1							Control Measure 1	
Hazard Cluster 1	Risk 2							Control Measure 2	
una del charter o	Risk 3							Control Measure 3	
Hazard Cluster 2	Risk 4							Control Measure 4	
	Risk 5							Control Measure 5	
Hazard Cluster 3	Risk 6							Control Measure 6	
	Risk 7							Control Measure 7	
Hazard Cluster 4	Risk 8							Control Measure 8	
Hazard Cluster 5	Risk 9							Control Measure 9	

Based on: A Control Framework to Limit Risk of AI in GxP by S. Münch and B. Stockton 2024 – ISPE European Conference

Dialca are platted along homeral alustary

ML RAMM dynamic application Risk mitigation and residual risks can be clearly identified

Knowledge

Ensure Comparability

Comparison different environments and between applications made easy

Knowledge

Benefits: The ML Risk and Control Framework ...

Alignment

• ... aligns with ICH Q9 (R1)

Cohesion

- ... connects:
- Application context
- Autonomy
- Model training and development
- Specific quality dimensions

Transparency

•... supports and simplifies presentation of risks for reviews and audits

Flexibility

•... can be dynamically applied during all steps of model selection, training, and deployment

Based on: A Control Framework to Limit Risk of AI in GxP by S. Münch and B. Stockton 2024 - ISPE European Conference

References

ICH Q9 Quality Risk Management (R1) (2023) GAMP 5 2nd Edition – Appendix D11 (2022) Al Maturity Model (2022) Al Governance & QA Framework (2022) Risk Analysis and Mitigation Matrix (RAMM) (2012) ML Risk and Control Framework (2024)

Based on: A Control Framework to Limit Risk of AI in GxP by S. Münch and B. Stockton 2024 - ISPE European Conference

Abbreviations

Short	Long
AAV	Adeno-Associated Viruses
AI	Artificial Intelligence
ATMP	Advanced Therapy Medicinal Products
D/A/CH	Germany / Austria / Switzerland
E2E	End to end
EM	Electron Microscopy
G5SE	GAMP® 5 Second Edition
GDPR	General Data Protection Regulation
GMLP	Good Machine Learning Practice
GxP	Good Practice (x = Manufacturing, Clinical, Laboratory, etc.)
ICH	International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use
ML	Machine Learning
PE	Pharmaceutical Engineering
QA	Quality Assurance
RAMM	Risk Analysis and Mitigation Matrix
SA	Software Automation

Based on: A Control Framework to Limit Risk of AI in GxP by S. Münch and B. Stockton 2024 – ISPE European Conference

Thank You!

Charles River Laboratories

https://www.criver.com/

ATEM Structural Discovery

https://atem.bio/

