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New Technology! New Trouble?
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GAMP 5 Second Edition
Machine Learning Sub-System Life Cycle Model (Appendix D11)
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Source: GAMP® 5 Second Edition, Appendix D11, Figure 31.1, © ISPE 2022
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Why a ML Risk and Control Framework?

Collaboration: Using Al/ML Critical thinking: Several
requires new competences perspectives need alignment
and close collaboration for a process-oriented
between various functions procedure

Data rules: Based on training, Managing risk: A risk
validation, and test inventory assists to identify
methodologies, every single relevant hazards and supports
data point counts interpretation of their analysis

Complexity: Models can be - : :
highly complex — sometimes Maintain control: A dynamic

approach to support control
s outcglrggkrggimb gl during the model’s life cycle

The ML Risk and Control Framework integrates processes, data, and roles

Based on: ML Risk & Control Framework by N. Erdmann, M. Heitmann 2023 -GAMP D-A-CH Forum
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ICH Q9 (R1) as Regulatory Background

-\\\Iu

While ICH Q9(R1) is used as a reference, the () s
ML Risk and Control Framework focuses on &) =
the following aspects: ‘Risk Assessment

r

o ; : Hazard |dentificati
- Initiate Quality Risk Management Process . —
. Risk Analysis
« Risk assessment — :
T : Risk Evaluati 2
- Hazard Identification e : — z
. . e = 3“\, =
* Risk Analysis D g C-’hisk Control @ §
. - o
« Risk Control E ’ Risk Reduction 2
*  Risk Reduction e é Risk Acceptance %
. . 0
* Risk Review - , §-

+  Review Events Qutput / Result of the QRM Process

\4- Risk Review
-

L 3

Review Events

Source: ML Risk and Control Framework, Figure 1, © PE magazine Jan/Feb 2024
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Al Maturi

Risk Severity Matrix for Initial Risk Classification

Two dimensions:

c Al Maturity — Application &
process assessment

e Risk Impact — Proximity and
influence on the patient

LEWVEL VI Autonomous Learning Al

Self-Triggered Leaming Al
Hurman Conirolled Updates [
HEhELY Human Sampled Operation

Control

Self-Triggered Leaming Al
LEVEL IV Human Operation Contral
Hurman Conirolled Updates

Resulting Hazard Impact: e

LEVEL Il Fiece-\WWise Locked-State

reemne - Basis for the following risk
assessment
LEVEL 2 Classical Mon-Al
. Affects the recommended
review cycles
LEVEL 1 Farallel &l
- Should enable comparison
Hazard Impact (Color/Mumber): mﬁ;ﬁ;ﬁlsﬁﬁ E:g;ﬁ:ﬁtrﬁiﬁm g;rfiilm:ﬁl:;::b:r;e :::li:pe:tntshrc:dli;ngstd:\.ji:aut between SyStemS and mOdeIS
Green: 1 (Low} Impact to Patient Safety Loop Human in the Loop
e Crange: 3 (Mad})
Red: 9 (High)
Dark Red: 18 (Very High)

Risk Impact

e Source: ML Risk and Control Framework, Figure 4, © PE magazine Jan/Feb 2024
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General Principles

Commensurate
effort

ML Risk and Control
Framework

Compatibility with Dynamic process
accepted methodology understanding

Source: A Control Framework to Limit Risk of Al in GxP by S. Miinch and B. Stockton 2024 — ISPE European Conference
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o Arcetar

(QC for Adeno-Associated Virus (AAV)) ———

Examples to illustrate some of the hazard clusters =—

Assess AAV fillings by 0
means of examples Pt

empty partially filled full

3 iImages are easy
- how about 10007

With permission
of ATEM

Source: Adapted from AI/ML in Regulated (GxP) Life Sciences Sectors Concept/Project Phase: Data sets and representativeness Brandi Stockton, Martin Heitman, Taylor Chartier, and Tom Williams 2024
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Use Case AAV: Challenges & Objectives

Challenges Objectives
 Requires highly skilled SMEs for Fully digital E2E process 1010
review and analysis (image creation, singulation, 1010

- Original method requires high classification)

effort and time
Development of a ML-model for L]

* Existing SW is rarely GxP-ready / the Al-based analysis of image l}l
compliant (no solution available data as part of quality O
out of the box) assessment

« Thousands of images need to be
generated and processed Validation of the model per

ML Risk & Control Framework

TIT |
AS SN

« Highly subjective results

Based on: Assessment of empty/full ratios of Adeno-associated Virus (AAV) capsids using cryogenic electron microscopy by Dr. Nico Erdmann & Carsten Jasper
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Challenges Specific for the Use Case

Unsupervised Learning « Uniform availability of real data problematic

clustering

. Training with - Labeling of existing real data is extremely time-

'
A -
ATLA A

unlabeled data ¥ & consuming and partly subjective
toseltinduced - Relatively small data difference for clustering
clustering l as
° @ - - Difficulties with training, verification, & validation

* Currently no other productive

use case in GxP known

Based on: Assessment of empty/full ratios of Adeno-associated Virus (AAV) capsids using cryogenic electron microscopy by Dr. Nico Erdmann & Carsten Jasper
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Synthetic Data: Background & Challenges

Background Challenges

« Synthetic data / images are well-known » Selecting appropriate source data

in GXP environments:
N L » Verifying representativeness and reliability
« Migration of data validation of synthetic data

* Anonymized test data for productive systems
(GDPR) « Noise in EM is highly complex

- Data/image generation: _ _ _
« Generation of partially filled AAV

» Selective variations

- Data multiplication « Generation of special cases

. e.g., for verification
* Inter- and extrapolation (e.g )

* Adding noise « Reality gap: Synthetic data / images are
. Agent models not a replacement for all variations in real
data / images

Based on: Assessment of empty/full ratios of Adeno-associated Virus (AAV) capsids using cryogenic electron microscopy by Dr. Nico Erdmann Carsten Jasper
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lllustration / Comparison of Random Samples

Real data Synthetic data




Scatter Plot — Real World vs Synthetic

(Two-dimensional feature space)

Particle Distribution - Scatter Plot

3 real-world data
B synthetic data

1 real-world data
B synthetic data

Feature 1
o

-2 4

-4

T T T T T
—4 -2 0 2 4
Feature 0

Images provided by ATEM, thanks to Carsten Jasper
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Let's Look at Two Examples ...

Initial Data Set Quality h

Data Quality in Operation -«

Based on: A Control Framework to Limit Risk of Al in GxP by S. Munch and B. Stockton 2024 — ISPE European Conference
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Risk Analysis with Hazard Clusters
along the G5SE D11 development life cycle

-----------— I-------------—
Opportunity and Selection
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I
I
I
i

ID Business Need/  Data Acquisitio : — | Monitor and Evaluate

2 E EPerformance/T aod

: ) ' conTivuous [

| ‘\\

: L Accept
R

Model
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Initial Data Set Quality Model Evaluation

Deploy

]
I
I
! e
Data Split DstaTypesiChsters | { ﬂ Deployment and Release
(Preprocessing and ! Core System Model Integration and Deploym
Classification) 1
Model Design e, E Model | _ PerformanceRecall [ EvaiModel Data Quality in Operation
< 1 Req/Spec Testing
.. ! . . .
Model Training . Prototyping | C”b_ ________ Tuning = E Human Interaction & Monitoring
1 : |
1 |
A 4
E Model .| Model/Data [‘ Model
Da | Design/Select Engineering Training
Transfo \?

B3 -E) =Hazard Cluster

Hyperparameters
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Data and Selection

I
I
]
s I
AR :
ing ‘ E Management E Maigj:?:ent
ol 1 :
! i
- Machine Learning (Sub-system) : :
! I
O s e e e e U e i s e s il e s 8D
Concept Project Operation

PHASES gysiNEss NEED/

OPPORTUNITY

I
1
i
SELECT/CREATE/TRAIN |
1
1
1

Based on: ML Risk and Control Framework, Figure 5, © PE magazine Jan/Feb 2024
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Initial Data Set Quality
Hazard Cluster #1

The quality of the case data set is crucial for the
i Biteimes Rl Babr Ao - expeFted performance in operz?tlons and for
Opportunity and Selection s training a model on the actual intended use.

Define Problem Risk: Learning process compromised

» Objective/Scope
* Business Process

Model
Verification

Examples:
» Chosen data set not adequately representative for
the real-world application (selection bias) = lack
IR PR of generalization
(Preprocessing and . q .
Classification) Labels of data may be inaccurate = inferior
Model 1 1 ini
B e d|rect|o_ns to the training procedures and
evaluation

S
Model/Data
Design/Select "| Engineering

Hyperparameters

|:| Initial Data Set Quality

—————

. Prototyping

I

I

|

I

I

I

I

I

I

|

I

|

1 Data
: Transformation
I
I
I
I
I
I
I
I
|
|
I

Data Split

Model Design

Model Training

A

PHASES BUSINESS NEED/

OPPORTUNITY

SELECT/CREATE/TRAIN

=P Iterative Evaluation 1
= 2 Manggéament and Selection ! Ma(;r;jgg:em
s
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! I
- - - E ‘
Concept Project | Operation
|
I
I

Based on: ML Risk and Control Framework, Figure 5, © PE magazine Jan/Feb 2024
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Data Quality in Operation
Hazard Cluster #7

| o

Data quality does not meet the expectations 2> i}  Moiorant Erelaate
loss in performance expected. | Performance/Trend(s)
Risk: Either direct impact to decisions of the ML- - | ERETRERR
enabled application or indirect impact due to

confusion of operators

|:| Data Quality in Operation

Examples: s : _
»  Distribution of real-world data may gradually shift System J Model Integration and Deployment ! Model Evaluation

I

- more fal§e positive cases or larger errors B retoencerecsi [ | B Deployment and Release
»  External or internal data sources may change Reg/Spec Testing !
|
I
I

Model Metrics

(Assessment)

during runtime = drop in performance and a risk ~~ EEEP IR N 1 Tuning b
to product quality v

Model/Data '[\ Model
"| Engineering \AJ Training

Hyperparameters

E Human Interaction & Monitoring

Iterative Evaluation A
and Selection Change
Management
: 1] -] = Hazard Cluster
Machine Learning (Sub-system) :
Concept Project Operation

PHASES BUSINESS NEED/

OPPORTUNITY

SELECT/CREATE/TRAIN

Based on: ML Risk and Control Framework, Figure 5, © PE magazine Jan/Feb 2024
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Risk Analysis and Mitigation Matrix (RAMM)

Originally published in PE magazine Jan/Feb 2012

: riPharmaceutical Science and Manufacturing Professionals

\CEUTICAL
IERING:}R
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@ o ®
g 3 § E |6 2
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g 8 g 2 3
£ g $ z |3 >
H Process Step Class Process Parameters or Material Attribute * o =
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4

Official sponsor of:

X

Based on: A Control Framework to Limit Risk of Al in GxP by S. Minch and B. Stockton 2024 — ISPE European Conference
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Structure of the ML RAMM
Visualization of risk classes based on quality dimensions

Risks are plotted along hazard clusters

Hazard Impact Factor {9
§ §
ualtyDimenin - - I - Classification may be performed along
I £ | 4 Quality Dimensions; a simple version
¢ |f | & |4 ¢ | may only classify the risk
Hazard Clusters Risks Risk Control Measure
Rigk 1 Cantrol Measure 1
Hazard Cluster 1
Risk 2 Control Measure 2
Risk 3 Control Measure 3
Hazard Cluster 2
Risk & Control Measure &
Risk 5 Control Measure 5 o o
azrd Cluster : —— Comparison of risks
sk control Meszure & via Total Score per risk
Risk 7 Cantrol Measure 7 or via Hazard Cluster Score
Hazard Cluster &
Risk B Control Measure 8
Hazard Cluster 5 Risk 8 Control Measure 9

Based on: A Control Framework to Limit Risk of Al in GxP by S. Minch and B. Stockton 2024 — ISPE European Conference
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ML RAMM dynamic application
Risk mitigation and residual risks can be clearly identified

Hazard Impact Factor|{@)9

i
g g
Fl o¥| £
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s § E & &
g | £ £ 3 H
g S & & & .y - .
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Monitoring Medium 27|Medium{ 27]Low 9lLow 9lLow Control Measure 11 Based on: A Control Framework to Limit Risk of Al in GxP by S. Miinch and B. Stockton 2024 — ISPE European Conference
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Ensure Comparability
Comparison different environments and between applications made easy
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Benefits: The ML Risk and Control Framework ...

Cohesion

e ... connects:

Application context

Autonomy

Model training and development
Specific quality dimensions

Alignment
» ... aligns with ICH Q9 (R1)

Transparency

»... supports and simplifies presentation of
risks for reviews and audits

Flexibility

*... can be dynamically applied during all
steps of model selection, training, and
deployment

o

Based on: A Control Framework to Limit Risk of Al in GxP by S. Minch and B. Stockton 2024 — ISPE European Conference
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Abbreviations

AAV Adeno-Associated Viruses

Al Artificial Intelligence

ATMP Advanced Therapy Medicinal Products

D/A/ICH Germany / Austria / Switzerland

E2E End to end

EM Electron Microscopy

G5SE GAMP® 5 Second Edition

GDPR General Data Protection Regulation

GMLP Good Machine Learning Practice

GxP Good ... Practice (x = Manufacturing, Clinical, Laboratory, etc.)
ICH International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use
ML Machine Learning

PE Pharmaceutical Engineering

QA Quiality Assurance

RAMM Risk Analysis and Mitigation Matrix

SA Software Automation

Based on: A Control Framework to Limit Risk of Al in GxP by S. Munch and B. Stockton 2024 — ISPE European Conference
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Thank You!

Charles River Laboratories
https.//www.criver.com/

ATEM Structural Discovery

https://atem.bio/



https://www.criver.com/
https://atem.bio/
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